Nothing
#' Plot an approximatio of the correlation structure of the test statistics
#' @examples
#' p = 200; n = 50; B = 5e1
#' x = rep(c(0,1), each = n/2)
#' mat = cbind(
#' matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
#' matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
#' )
#' mat = mat = mat + rnorm(n, sd = 0.3) #Introduce some dependence
#' fdrRes = reconsi(mat, x, B = B)
#' plotApproxCovar(fdrRes)
#' @export
#' @param reconsiFit The reconsi fit
#' @param col,x,y,xlab,ylab,... A list of arguments for the image() function.
#' @param nBins,binEdges passed on to the getApproxCovar function
#' @importFrom graphics image
#' @importFrom grDevices colorRampPalette
#' @details By default, yellow indicates negative correlaton between bin counts,
#' blue positive correlation
#' @note This is not the covariance matrix of the p test statistic, nor of the
#' data! It is an approximate covariance matrix of binned test statistics for
#' visualization purposes.
#' @return invisible()
plotApproxCovar = function(reconsiFit, col = colorRampPalette(
c("yellow","blue"))(12),
x = seq(-4.2, 4.2, 0.1),
y = seq(-4.2, 4.2, 0.1),
xlab = "Z-values", ylab = "Z-values",
nBins = 82L, binEdges = c(-4.1,4.1), ...){
image(z = getApproxCovar(reconsiFit$statsPerm,
nBins = nBins, binEdges = binEdges),
x = x, y = y, xlab = xlab, ylab = ylab, col = col, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.