R/ExposomeSet-mexwas.R

#' @describeIn ExposomeSet Performs a Multiple-EXposure-Wide Association Study.
#' @param phenotype Health outcome to be used as dependent variable.
setMethod(
    f = "mexwas",
    signature = "ExposomeSet",
    definition = function(object, phenotype, family, warnings = TRUE) {
        if(sum(phenotype %in% colnames(pData(object))) != 1) {
            stop("Given phenotype (", phenotype, ") not in ExposomeSet.")
        }

        dta <- expos(object)
        if(sum(is.na(dta)) != 0) {
            #stop("Exposure data has 'NA' values.")
            warnings("Exposure data has missing values. The cases having ",
                     "missing values will be droped.")
        }

        phe <- pData(object)[ , phenotype, drop=FALSE]
        if(sum(is.na(phe)) != 0) {
            warning("Given phenotype (", phenotype, ") has NA values. ",
                    sum(is.na(phe)), " samples will be discarded.")
            phe <- phe[!is.na(phe), , drop=FALSE]
        }
        dta <- dta[rownames(phe), , drop=FALSE]
        phe <- phe[ , 1]

        ## --------------------------------------------------------------------
        if(warnings) {
            warning("Categorical exposures will be droped and not used in the analysis.")
        }

        x <- dta[ , exposureNames(object)[fData(object)$`.type` == "numeric"]]
        x <- as.matrix(x)
        if(family %in% c("binomial", "multinomial")) phe <- as.factor(phe)
        ms <- ifelse(family %in% c("gaussian", "poisson"), "mse", "auc")
        cvfit <- glmnet::cv.glmnet(x, phe, family = family, type.measure=ms)
        fit <- glmnet::glmnet(x, phe, family = family)

        new("mExWAS",
            result = list(cvfit, fit),
            description = S4Vectors::DataFrame(fData(object)[colnames(x), ]),
            phenotype = phenotype
        )
    }
)
#
#
# notused <- function(object, verbose = FALSE, warnings = TRUE) {
#     object <- expo
#
#     if(verbose) {
#         message("Computing correlation between exposures.")
#     }
#     cr <- extract(correlation(object, use = "pairwise.complete.obs", method.cor = "pearson"))
#     cr <- abs(cr)
#
#     ## Select exposures with a correlation over 0.9
#     re <- list()
#     kk <- 1
#     for(ii in 1:(nrow(cr) - 1)) {
#         for(jj in (ii+1):ncol(cr)) {
#             if(cr[ii, jj] > 0.9) {
#                 re[[kk]] <- c(rownames(cr)[ii], rownames(cr)[jj])
#                 kk <- kk + 1
#             }
#         }
#     }
#     rm(kk)
#     re <- unique(unlist(re))
#
#     if(warnings & length(re) != 0) {
#         warning("There are ", length(re), " exposures with correlations over 0.9. Those exposures will be excluded from the analysis.")
#     }
#
#     sel <- colnames(cr)[!colnames(cr) %in% re]
#     rm(re)
#     ## /
#
#     ## Get exposures and remove those with high correlation
#     dta <- as.data.frame(object, phe = FALSE)
#     message(ncol(dta))
#     dta <- dta[ , sel]
#     message(ncol(dta))
#     ## /
#
#     ## Add phenotype and perfom DSA
#     dta <- cbind(dta, pData(object)[ , phenotype, drop=FALSE])
#     mod <- DSA::DSA(formula(paste0(phenotype, " ~ 1")),
#                data = dta,
#                maxsize = ncol(dta),
#                maxorderint = 1,
#                maxsumofpow = 1,
#                id = rownames(dta)
#     )
#     ## /
#
#     summary(mod)
#
# }

Try the rexposome package in your browser

Any scripts or data that you put into this service are public.

rexposome documentation built on March 13, 2021, 2:01 a.m.