Nothing
#' A wrapper function to perform scHOT
#'
#' @title scHOT
#'
#' @param scHOT A scHOT object
#' @param testingScaffold A matrix with rows for each testing combination
#' @param weightMatrix A matrix indicates the weight matrix for scHOT analysis
#' @param positionType A string indicating the position type,
#' either "trajectory" or "spatial"
#' @param positionColData Either trajectory or spatial information
#' for each sample. If positionType is "trajectory"
#' then positionColData should be a character or numeric indicating
#' the subset of colData of the scHOT object.
#' If positionType is "spatial" then positionColData should be
#' a character or numeric vector indicating the subset of colData that
#' give the full spatial coordinates.
#' @param nrow.out The number of weightings to include for testing,
#' a smaller value is faster for computation
#' @param averageAcrossTrajectoryTies Logical indicating whether ties
#' in the trajectory should be given the same local weights
#' @param higherOrderFunction A function object indicates the
#' higher order function
#' @param higherOrderFunctionType is "weighted" or "unweighted",
#' determines if there
#' is a weighting argument in the higher order function
#' @param numberPermutations The number of permutations,
#' set as 1000 by default
#' @param numberScaffold The number of testing scaffolds to
#' perform permutations, set as 100 by default
#' @param storePermutations a logical flag on whether
#' permutation values should be saved
#' @param higherOrderSummaryFunction A functon indicating the higher order
#' summary function (default is standard deviation `sd`)
#' @param parallel A logical input indicating whether to run
#' the permutation test using multiple cores in parallel.
#' @param BPPARAM A \code{BiocParallelParam} class object from
#' the \code{BiocParallel} package is used. Default is SerialParam().
#' @param usenperm_estimate Logical (default FALSE) if number of neighbouring
#' permutations should be used to estimate P-values, or
#' if difference of global higher order statistic should be used
#' @param nperm_estimate Number of neighbouring permutations to
#' use for p-value estimation
#' @param maxDist max difference of global higher order statistic to
#' use for p-value estimation (default 0.1)
#' @param plot A logical input indicating whether the results are plotted
#' @param verbose A logical input indicating whether the intermediate
#' steps will be printed
#'
#' @param ... parameters for function trajectoryWeightMatrix or spatialWeightMatrix
#'
#' @return A scHOT object
#'
#' @examples
#' data(MOB_subset)
#' sce_MOB_subset <- MOB_subset$sce_MOB_subset
#' scHOT_spatial <- scHOT_buildFromSCE(sce_MOB_subset,
#' assayName = "logcounts",
#' positionType = "spatial",
#' positionColData = c("x", "y"))
#' pairs <- matrix(c("Arrb1", "Mtor", "Dnm1l", "Gucy1b3"), ncol = 2, byrow = TRUE)
#' rownames(pairs) <- apply(pairs,1,paste0,collapse = "_")
#'
#' scHOT_spatial <- scHOT(scHOT_spatial,
#' testingScaffold = pairs,
#' positionType = "spatial",
#' positionColData = c("x", "y"),
#' nrow.out = NULL,
#' higherOrderFunction = weightedSpearman,
#' higherOrderFunctionType = "weighted",
#' numberPermutations = 100,
#' higherOrderSummaryFunction = sd,
#' parallel = FALSE,
#' verbose = TRUE,
#' span = 0.05)
#' @importFrom stats sd
#'
#' @export
scHOT <- function(scHOT,
testingScaffold = NULL,
weightMatrix = NULL,
positionType = NULL,
positionColData = NULL,
nrow.out = NULL,
averageAcrossTrajectoryTies = FALSE,
higherOrderFunction = NULL,
higherOrderFunctionType = NULL,
numberPermutations = 1000,
numberScaffold = 100,
storePermutations = TRUE,
higherOrderSummaryFunction = sd,
parallel = FALSE,
BPPARAM = BiocParallel::SerialParam(),
usenperm_estimate = FALSE,
nperm_estimate = 10000,
maxDist = 0.1,
plot = FALSE,
verbose = TRUE,
...
) {
# add testing scaffold
# if (ncol(testingScaffold) != 2) {
# stop("testingScaffold must be a matrix with two columns \n")
# }
# rownames(testingScaffold) <- paste(testingScaffold[, 1], testingScaffold[, 2])
# if (nrow(testingScaffold) == 1) {
# rownames(testingScaffold) <- apply(testingScaffold,1,paste0, collapse = "_")
# } else {
rownames(testingScaffold) <- apply(testingScaffold, 1, paste, collapse = "_")
# }
if (verbose) {
cat("Adding testing scaffold \n")
}
scHOT <- scHOT_addTestingScaffold(scHOT,
testingScaffold = testingScaffold)
# set weight matrix
if (verbose) {
cat("Set weight matrix \n")
}
scHOT <- scHOT_setWeightMatrix(scHOT,
weightMatrix = weightMatrix,
positionColData = positionColData,
positionType = positionType,
nrow.out = nrow.out,
averageAcrossTrajectoryTies =
averageAcrossTrajectoryTies,
...)
if (verbose) {
cat("Calculate gobal higher order function \n")
}
scHOT <- scHOT_calculateGlobalHigherOrderFunction(scHOT,
higherOrderFunction =
higherOrderFunction,
higherOrderFunctionType =
higherOrderFunctionType)
if (verbose) {
cat("Calculate Higher Order Test Statistics \n")
}
scHOT <- scHOT_setPermutationScaffold(scHOT,
numberPermutations = numberPermutations,
numberScaffold = numberScaffold,
storePermutations = storePermutations)
scHOT <- scHOT_calculateHigherOrderTestStatistics(scHOT,
higherOrderSummaryFunction =
higherOrderSummaryFunction)
if (verbose) {
cat("Perform Permutation Test \n")
}
scHOT <- scHOT_performPermutationTest(scHOT,
verbose = verbose,
parallel = parallel,
BPPARAM = BPPARAM)
if (storePermutations) {
if (verbose) {
cat("Estimating p-values \n")
}
scHOT <- scHOT_estimatePvalues(scHOT,
usenperm_estimate = usenperm_estimate,
nperm_estimate = nperm_estimate,
maxDist = maxDist,
plot = plot,
verbose = verbose)
} else {
if (verbose) {
cat("No permutations stored, not estimating p-values \n")
}
}
return(scHOT)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.