Nothing
#### compare_RT_CDF.R Wu Lab, Johns Hopkins University Author: Xiaona Tang
#### Date: Sep 20, 2017
## compare_RT_CDF-methods
##' @name compare_RT_CDF
##' @aliases compare_RT_CDF
##' @title Compare Residence time/Survival Curve (1-CDF)
##' @rdname compare_RT_CDF-methods
##' @docType methods
##' @description Compare Residence time/Survival Curve of multiple trackll.
##' Or simply plot the survival curve of one trackll.
##'
##' @usage
##'
##' compare_RT_CDF(trackll=NULL,x.max=30,
##' filter=c(min=3,max=Inf),t.interval=0.5,output=FALSE)
##'
##' @param trackll trajectory list generated by createTrackll() and processing.
##' if NULL, user will be prompted to enter the trackll name.
##' @param x.max The maximum range of X axis, i.e. time, for the output plot.
##' Default 30 sec.
##' @param filter Filter the tracks by step/frame number (length). Only tracks
##' pass through filter will be selected.
##' @param t.interval time interval for image aquisition. Default 0.5 sec.
##' @param output An Logical indicate if output should be generated. See Values
##' for detail.
##' @return
##' \itemize{
##' \item{csv:} 1-CDF of track lengths and time intervals output in .csv
##' format, when output = TRUE.
##' \item{Plot:} 1-CDF of track lengths of each input trackll will be plotted
##' together in one plot.
##' }
##' @details Compare Residence time/Survival Curve of multiple track list
##' (trackll). Or simply plot the survival curve of one trackll.
##' The survival curve/probability is calculated as 1-CDF of the length
##' of tracks/trajectories.
##'
##' If the acquisition time interval of the tracklls are different, set
##' argument trackll=NULL, users will be prompted to input the number of the
##' track list (trackll) to compare/plot.
##' Then users will be prompted to input the name and acquisition time interval
##' of each trackll. The trackll should be masked and merged. The maximum time
##' range to be plotted can be set using x.max, this will not change the
##' curve/probabiltiy, which is determined by all track information
##' in the trackll.
##'
##' @examples
##'
##' # Generate trackll, and process,
##' # e.g. mask region of interest, merge tracks from multiple files.
##' folder1=system.file('extdata','HSF',package='sojourner')
##' trackll1=createTrackll(folder1,input=3, cores = 2)
##' trackll1=maskTracks(folder1,trackll1)
##' trackll1=mergeTracks(folder1,trackll1)
##'
##' folder2=system.file('extdata','HSF_2',package='sojourner')
##' trackll2=createTrackll(folder2,input=2, cores = 2)
##' trackll2=maskTracks(folder2,trackll2)
##' trackll2=mergeTracks(folder2,trackll2)
##'
##' # Plot and output the survival curve,
##' compare_RT_CDF(trackll=c(trackll1,trackll2),x.max=30,
##' filter=c(min=3,max=Inf),t.interval=0.5,output=FALSE)
##' @importFrom mltools empirical_cdf
##' @export compare_RT_CDF
##'
##############################################################################
compare_RT_CDF <- function(trackll = NULL, x.max = 30, filter = c(min = 3,
max = Inf), t.interval = 0.5, output = FALSE) {
## Import trackll (merged) information
if (is.null(trackll)) {
Totaltracklls <- readline(
paste("Set the numbers of trackll",
"to compare decay (survival curve) of residence time:"))
Totaltracklls <- as.numeric(Totaltracklls)
} else {
Totaltracklls <- as.numeric(length(trackll))
}
# cl=c('grey30',my_colorBrewer(9)) cl<-cl[c(1,2,5,6,8,10,9,7,4,3)]
# Record time interval of the input trackll incase the time interval is
# different among tracklls.
t.interval = t.interval
if (is.null(trackll)) {
trackll = c()
for (i in c(seq_len(Totaltracklls))) {
trackll.label <- readline(
cat("Enter the trackll you want to plot: "))
t.interval[i] <- as.numeric(readline(
cat("What's the t.interval for this trackll in sec: ")))
trackll[i] <- get(paste(trackll.label))
names(trackll)[i] <- names(get(paste(trackll.label)))
}
} else {
t.interval = rep(t.interval, length(trackll))
}
## Set plot area and start a plot window.
par(mar = c(5.1, 5.1, 4.1, 4.1), xpd = FALSE)
par(mfrow = c(1, 1), bg = "white", fg = "black")
plot.new()
plot.window(xlim = c(0, x.max), ylim = c(0, 1))
axis(1, cex.axis = 1.5)
axis(2, cex.axis = 1.5)
# title=readline('Set title for the plot:')
title(main = "1-CDF of dwell time", cex.main = 1.5)
title(xlab = "Time (s)", cex.lab = 1.5)
title(ylab = "Survival probability", cex.lab = 1.5)
box()
## Generate color set
cl <- c("grey30", "#FF8E8B", "#65B9FF", "#FF7DE6", "#44D03D", "#DF96FF",
"#F6A600", "#00D4EF", "#00D9B0", "#B1C100")
## Generate data.frame storing information of trackll name, time
## intervals, and corresponding 1-CDF.
trackllname <- c()
n <- c()
## Set time intervals according to the minimal acquisition time interval
## of input tracklls.
ONE_CDF <- setNames(data.frame(seq(min(t.interval),
2*x.max, by = min(t.interval))),
"Time intervals (s)")
for (i in c(seq_len(Totaltracklls))) {
trackll.n <- filterTrack(trackll[i], filter = filter)
trackllname <- append(trackllname, gsub("ST_", "", names(trackll)[i]))
n <- append(n, length(trackll.n[[1]]))
## Calculate track length and 1-CDF
trajLength <- vapply(trackll.n[[1]], function(x) {
(x$Frame[dim(x)[1]] - x$Frame[1] + 1) * t.interval[i]
}, FUN.VALUE=double(1))
CDF <- mltools::empirical_cdf(trajLength,
ubounds = seq(min(t.interval),
2 * x.max, by = min(t.interval)))
one_CDF <- (1 - (CDF$CDF))
## Plot survival curve
points(seq(min(t.interval), x.max, by = min(t.interval)),
one_CDF[seq_len(x.max/min(t.interval))],
type = "l", lwd = 4, col = cl[i])
## Record time intervals and corresponding 1-CDF into one data.frame
ONE_CDF <- cbind(ONE_CDF, setNames(data.frame(one_CDF[seq_len((2 *
x.max/min(t.interval)))]), trackllname[i]))
}
## Output time intervals and corrsponding 1-CDF in .csv format.
if (output) {
filename <- paste("1-CDF-DwellTime", "--",
format(Sys.time(), "%Y%m%d_%H%M%S"),
".csv", sep = "")
write.table(ONE_CDF, filename, append = FALSE, sep = ",",
row.names = FALSE)
cat(" 1-CDF of selected tracklls were output in the working directory.
If using the same filter range, the curve is exactly the same as the
raw data curve in compare_RT_CDF(). Therefore, this output can be used
for plotting and fitting in other programs such as Prism")
}
## Add legend and reset plot area.
par(mar = c(0, 0, 0, 0), xpd = TRUE)
temp <- legend("topright", legend = rep(" ", Totaltracklls),
text.width = max(strwidth(trackllname)),
xjust = 1, yjust = 1, y.intersp = 2, bty = "n")
text(temp$rect$left + temp$rect$w, temp$text$y, paste(rep(trackllname),
rep(" ( n=", Totaltracklls), rep(n), rep(")", Totaltracklls)),
col = cl, pos = 2, cex = 1.5)
# legend('topright',legend =paste(trackllname,' ( n =',n,')'), text.col
# = cl,col=cl, pch=NULL, lty=1, lwd=4,bty = 'n',cex=2)
par(mar = c(5.1, 5.1, 4.1, 4.1), xpd = TRUE)
## Return value: data.frame containing time intervals and corrsponding
## 1-CDF
return(invisible(ONE_CDF))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.