Description Usage Arguments Details Value References Examples
A Receiver Operator Characteristic (ROC) plot for PLSDA models computed by adjusting the threshold for assigning group labels from PLS predictions.
1 | plsda_roc_plot(factor_name, ...)
|
factor_name |
(character) The name of a sample-meta column to use. |
... |
Additional slots and values passed to |
This object makes use of functionality from the following packages:
pls
ggplot2
A plsda_roc_plot
object.
Mevik B, Wehrens R, Liland K (2020). pls: Partial Least Squares and Principal Component Regression. R package version 2.7-3, https://CRAN.R-project.org/package=pls.
Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
1 2 3 4 5 6 | D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)
C = plsda_roc_plot(factor_name='Species')
chart_plot(C,M[2])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.