Description Usage Arguments Value Author(s) See Also Examples
If droplets
is a data frame, the droplets are classified
using the k-means clustering algorithm.
For ddpcrWell
, the droplets are classified by using the
k-means clustering algorithm.
For ddpcrPlate
, all of the wells are combined and
classified, with this new classification assigned to the
ddpcrPlate
object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | kmeansClassify(
droplets,
centres = matrix(c(0, 0, 10000, 0, 0, 7000, 10000, 7000), ncol = 2, byrow = TRUE),
...
)
## S4 method for signature 'data.frame'
kmeansClassify(
droplets,
centres = matrix(c(0, 0, 10000, 0, 0, 7000, 10000, 7000), ncol = 2, byrow = TRUE),
fullTable = TRUE
)
## S4 method for signature 'ddpcrWell'
kmeansClassify(
droplets,
centres = matrix(c(0, 0, 10000, 0, 0, 7000, 10000, 7000), ncol = 2, byrow = TRUE)
)
## S4 method for signature 'ddpcrPlate'
kmeansClassify(
droplets,
centres = matrix(c(0, 0, 10000, 0, 0, 7000, 10000, 7000), ncol = 2, byrow = TRUE)
)
|
droplets |
A |
centres |
Either:
Defaults to |
... |
Other options depending on the type of |
fullTable |
If |
An object with the new classification.
If droplets
is a data frame, a list is returned with the
following components:
data |
A data frame or vector corresponding to the classification. |
centres |
A data frame listing the final centre points from the k-means algorithm with the corresponding cluster labels. |
Anthony Chiu, anthony.chiu@cruk.manchester.ac.uk
This method uses the kmeans
function.
To manually set and retrieve classifications, use the
wellClassification
, plateClassification
and
plateClassificationMethod
methods.
For a supervised classification approach, one may want to consider
knnClassify
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ### Use the KRASdata dataset for all of these examples.
## Use K-means clustering to classify droplets into four (the default
## number) classes.
aWell <- kmeansClassify(KRASdata[["E03"]])
## We can look the the classification or the centres.
head(aWell$data)
aWell$centres
## Specify 3 centres for a different sample in KRASdata.
aWell <- kmeansClassify(KRASdata[["H04"]], centres=3)
head(aWell$data)
## We can be more specific with the choice of centres.
aWell <- kmeansClassify(KRASdata[["H04"]],
centres=matrix(c(5000, 1500, 5500, 7000, 10000,
2000), ncol=2, byrow=TRUE))
## We can use \code{ddpcrWell} objects directly as a parameter.
aWell <- ddpcrWell(well=KRASdata[["E03"]])
kmeansClassify(aWell)
## We can take multiple samples in a \code{ddpcrPlate} object and
## classify everything together.
krasPlate <- ddpcrPlate(wells=KRASdata)
kmeansClassify(krasPlate)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.