Nothing
test_that("fitModel works", {
vals <- featureValues(xod_xgrg)
dat <- data.frame(injection_idx = 1:length(fileNames(xod_xgrg)))
fits <- rowFitModel(formula = y ~ injection_idx, y = vals,
minVals = 3, data = dat)
## Check that we've got NA for features with less than 3 values.
nas <- apply(vals, MARGIN = 1, function(z) any(is.na(z)))
expect_equal(nas, vapply(fits, function(z) any(is.na(z)), logical(1)))
## Check that robustbase would work
if (requireNamespace("robustbase", quietly = TRUE))
fits <- rowFitModel(formula = y ~ injection_idx, y = vals,
minVals = 3, data = dat, method = "lmrob")
})
test_that("model adjustment with batch works", {
## Here we test that linear model based adjustment with a batch is
## working.
y <- c(2, 3, 2.7, 3.5, 3.8, 4.6, 5.9, 8, 4, 5.1, 5.6, 6.8, 7.1, 8.1, 8.9,
9.3)
inj_idx <- 1:length(y)
btch <- c(rep("a", 8), rep("b", 8))
dta <- data.frame(inj_idx = inj_idx, btch = btch)
plot(inj_idx, y)
lmod <- lm(y ~ inj_idx + btch)
prd <- predict(lmod, newdata = data.frame(y = y, inj_idx = inj_idx,
btch = btch))
## y_new <- y - prd + mean(y)
y_new <- y - prd + mean(lmod$fitted.values + lmod$residuals)
points(inj_idx, y_new, pch = 16, col = "grey")
expect_equal(mean(y), mean(y_new))
mdl <- fitModel(y ~ inj_idx + btch, y = y,
data = data.frame(inj_idx = inj_idx, btch = btch))
expect_equal(mdl$coefficients, lmod$coefficients)
res <- applyModelAdjustment(y, data = data.frame(inj_idx = inj_idx,
btch = btch),
lmod = mdl)
expect_equal(res, unname(y_new))
## Check if we have only NAs in one batch
y[btch == "a"] <- NA
mdl <- fitModel(y ~ inj_idx + btch, y = y, data = dta)
expect_true(is.na(mdl))
## plot(x = dta$inj_idx, y_2)
## abline(sum(mdl$coefficients[c(1, 3)]), mdl$coefficients[2])
## ## Adjust.
## res <- applyModelAdjustment(y = y_2, data = dta, lmod = mdl)
## points(dta$inj_idx, res, pch = 16)
## mean(res, na.rm = TRUE)
## mean(y_2, na.rm = TRUE)
})
test_that("fitModel, rowFitModel works on matrix and vector", {
y <- c(2, 3, 2.7, 3.5, 3.8, 4.6, 5.9, 8, 4, 5.1, 5.6, 6.8, 7.1)
inj_idx <- 1:length(y)
dta <- data.frame(inj_idx = inj_idx)
expect_error(fitModel())
expect_error(fitModel(formula = ~ y))
expect_error(fitModel(formula = ~ y, data = dta))
expect_error(fitModel(formula = ~ inj_idx, data = dta, y = y))
expect_error(fitModel(y ~ inj_idx, data = dta, y = y, method = "adfd"))
expect_error(fitModel(y ~ inj_idx, data = dta, y = y, weights = 3))
res <- fitModel(y ~ inj_idx, data = dta, y = y)
expect_equal(res$coefficients, lm(y ~ inj_idx)$coefficients)
rres <- fitModel(y ~ inj_idx, data = dta, y = y, method = "lmrob")
expect_true(all(res$coefficients != rres$coefficients))
## Test with weights
res2 <- fitModel(y ~ inj_idx, data = dta, y = y,
weights = abs(rnorm(length(y))))
expect_true(all(res$coefficients != res2$coefficients))
rres2 <- fitModel(y ~ inj_idx, data = dta, y = y, method = "lmrob",
weights = abs(rnorm(length(y))))
expect_true(all(rres$coefficients != rres2$coefficients))
ymat <- matrix(rep(y, 5), nrow = 5, byrow = TRUE)
res_3 <- fitModel(y ~ inj_idx, data = dta, y = ymat)
expect_equal(res_3$coefficients, res$coefficients)
## rowFitModel
ymat[2, ] <- ymat[2, ] + 3
res <- rowFitModel(y ~ inj_idx, data = dta, y = ymat)
expect_true(length(res) == nrow(ymat))
expect_equal(res[[1]]$coefficients, res_3$coefficients)
slps <- vapply(res, function(z) z$coefficients[2], numeric(1))
ints <- vapply(res, function(z) z$coefficients[1], numeric(1))
expect_equal(unname(slps[1]), unname(slps[2]))
expect_equal(unname(slps[1]), unname(slps[3]))
expect_equal(unname(slps[1]), unname(slps[4]))
expect_equal(unname(slps[1]), unname(slps[5]))
expect_equal(unname(ints[1]) + 3, unname(ints[2]))
## y being a matrix, weights a vector.
wght <- abs(rnorm(length(y)))
res <- fitModel(y ~ inj_idx, data = dta, y = y, weights = wght)
res_mat <- rowFitModel(y ~ inj_idx, data = dta, y = ymat,
weights = wght)
expect_equal(res$coefficients, res_mat[[1]]$coefficients)
expect_equal(res$coefficients, res_mat[[3]]$coefficients)
expect_equal(res$coefficients, res_mat[[4]]$coefficients)
expect_equal(res$coefficients, res_mat[[5]]$coefficients)
## y being a matrix, weights a matrix.
wght <- rbind(wght, abs(rnorm(length(y))), abs(rnorm(length(y))),
wght, abs(rnorm(length(y))))
res_mat <- rowFitModel(y ~ inj_idx, data = dta, y = ymat,
weights = wght)
expect_equal(res_mat[[1]]$coefficients, res$coefficients)
expect_equal(res_mat[[4]]$coefficients, res$coefficients)
expect_true(all(res_mat[[2]]$coefficients != res$coefficients))
expect_true(all(res_mat[[3]]$coefficients != res$coefficients))
expect_true(all(res_mat[[5]]$coefficients != res$coefficients))
## Errors for weights.
expect_error(rowFitModel(y ~ inj_idx, data = dta, y = ymat,
weights = 1:3))
expect_error(rowFitModel(y ~ inj_idx, data = dta, y = ymat,
weights = wght[1:3, ]))
})
test_that("applyModelAdjustment works", {
y <- c(2, 3, 2.7, 3.5, 3.8, 4.6, 5.9, 8, 4, 5.1, 5.6, 6.8, 7.1)
inj_idx <- 1:length(y)
btch <- c(rep("a", 8), rep("b", 5))
dta <- data.frame(inj_idx = inj_idx, batch = btch)
mdl <- fitModel(y ~ ii, data = data.frame(ii = inj_idx), y = y)
## A single model, single row.
res <- applyModelAdjustment(y, data.frame(ii = inj_idx), lmod = mdl)
plot(inj_idx, y)
abline(mdl)
points(inj_idx, res, col = "grey", pch = 16)
expect_equal(mean(res), mean(y))
expect_true(lm(res ~ inj_idx)$coefficients[2] < 1e-7)
## Model with only batch
mdl <- fitModel(y ~ batch, data = dta, y = y)
res <- applyModelAdjustment(y, dta, lmod = mdl)
plot(inj_idx, y)
abline(mdl)
points(inj_idx, res, col = "grey", pch = 16)
expect_equal(mean(res), mean(y))
expect_equal(mean(res[dta$batch == "a"]), mean(res[dta$batch == "b"]))
## Model with batch-specific slope
mdl <- fitModel(y ~ inj_idx * batch, data = dta, y = y)
res <- applyModelAdjustment(y, dta, lmod = mdl)
plot(inj_idx, y)
points(inj_idx, res, col = "grey", pch = 16)
expect_equal(mean(res), mean(y))
expect_equal(mean(res[dta$batch == "a"]), mean(res[dta$batch == "b"]))
## A single model on a matrix.
ymat <- matrix(rep(y, 5), nrow = 5, byrow = TRUE)
ymat[2, ] <- ymat[2, ] + 3
mdl <- fitModel(y ~ ii, data = data.frame(ii = inj_idx), y = y)
res <- applyModelAdjustment(y, data.frame(ii = inj_idx), lmod = mdl)
resm <- applyModelAdjustment(ymat, data.frame(ii = inj_idx),
lmod = mdl)
expect_equal(resm[1, ], res)
expect_true(lm(resm[2, ] ~ inj_idx)$coefficients[2] < 1e-7)
## multiple models with a matrix.
mdls <- rowFitModel(y ~ ii, data = data.frame(ii = inj_idx),
y = ymat)
resm <- applyModelAdjustment(ymat, data.frame(ii = inj_idx),
lmod = mdls)
expect_equal(resm[1, ], res)
expect_equal(resm[2, ], res + 3)
## Use only some for estimation
idx <- 1:8
mdl <- fitModel(y ~ ii, data = data.frame(ii = inj_idx[idx]), y = y[idx])
res <- applyModelAdjustment(y, data.frame(ii = inj_idx), lmod = mdl)
plot(inj_idx, y, ylim = c(0, 8))
abline(mdl)
points(inj_idx, res, col = "grey", pch = 16)
})
test_that("replaceNaOnEnds works", {
x <- c(NA, 3, 4, 6, 4, 2, NA, 3, NA, 4, 5, 6, NA)
expect_equal(replaceNaOnEnds(x), c(3, 3, 4, 6, 4, 2, NA, 3, NA, 4, 5, 6, 6))
expect_error(replaceNaOnEnds(x, batch = 1:4))
batch <- c(rep("b", 7), rep("a", 6))
inji <- c(1:7, 1:6)
res <- replaceNaOnEnds(x, batch = batch, injIndex = inji)
expect_equal(res, c(3, 3, 4, 6, 4, 2, 2, 3, NA, 4, 5, 6, 6))
## Should also work if randomized.
idx <- sample(1:length(x))
x[idx]
res <- replaceNaOnEnds(x[idx], batch = batch[idx], injIndex = inji[idx])
expect_equal(res[order(idx)], c(3, 3, 4, 6, 4, 2, 2, 3, NA, 4, 5, 6, 6))
## With a matrix...
xmat <- matrix(rep(x, each = 100), nrow = 100)
res <- replaceNaOnEnds(xmat, batch = batch, injIndex = inji)
expect_equal(res[1, ], c(3, 3, 4, 6, 4, 2, 2, 3, NA, 4, 5, 6, 6))
expect_true(nrow(unique(res)) == 1)
expect_equal(unique(res)[1, ], c(3, 3, 4, 6, 4, 2, 2, 3, NA, 4, 5, 6, 6))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.