Nothing
###########################################################################/**
# @RdocFunction WHInit
#
# @title "Initialization of the W and H matrices"
#
# \description{
# @get "title".
# }
#
# @synopsis
#
# \arguments{
# \item{V}{An KxI @matrix where I is the number of arrays and
# K is the number of probes where K should be even (K=2L).}
# \item{...}{Not used.}
# }
#
# \value{
# Returns a @list:
# \item{W}{A Kx2 @matrix of initial probe-affinity estimates.}
# \item{H}{A 2xI @matrix of initial allele-specific copy-number estimates.}
# \item{status}{An @integer specifying the status of the initialization:
# 0=normal case, 1=only one allele (either AA or BB), or
# 2=all samples are AB.
# }
# }
#
# \details{
# The allele-specific copy number estimates are estimated using a
# naive genotyping algorithm.
# The probe-affinities are estimated using a pseudo inverse.
# }
#
# @keyword internal
#*/###########################################################################
WHInit <- function(V, ...) {
# Number of arrays
I <- ncol(V);
# Number of probes
K <- nrow(V);
# Number of probe pairs
L <- as.integer(K/2);
# A small positive value
eps <- 0.0001;
H <- matrix(0, nrow=2L, ncol=I);
W <- matrix(0, nrow=K, ncol=2L);
rrA <- 1:L;
rrB <- (L+1):K;
rrBA <- c(rrB, rrA);
PMA <- V[rrA,,drop=FALSE];
PMB <- V[rrB,,drop=FALSE];
# We distinguish three locations:
# (1) AA (PMA > 2 PMB),
# (2) AB (PMA < 2PMB & PMB < 2PMA), and
# (3) BB (PMB > 2PMB).
# We apply this test for each of the probes and we use majority voting.
H[1,] <- as.integer(colMeans(PMA > 0.5*PMB) > 0.5);
H[2,] <- as.integer(colMeans(PMB > 0.5*PMA) > 0.5);
summary <- 2*H[1L,] + H[2L,];
dummy <- unique(summary);
status <- 0L;
# If all the samples have the same genotype, it is a special case
if (length(dummy) == 1L) {
# We have only one Genotype
# Case AA or BB
if (prod(H[,1L]) == 0) {
#print('only one allele AA or BB');
# Use the median for the first column of W
W[,1L] <- rowMedians(V)/2;
# Flip it for the second column
W[,2L] <- W[rrBA,1L];
# Change both of them if it was BB
H <- H*2;
if (H[2L,1L] == 1){
# Was it BB?
W <- W[,c(2L,1L),drop=FALSE];
H <- H[c(2L,1L),,drop=FALSE];
}
status <- 1L;
} else {
#disp('only samples AB')
W[,1L] <- rowMedians(V);
W[,2L] <- W[,1L];
# In this case there is no way to compute the cross hybridization
# We assume that there is no cross hybridization (just to asssume
# something :-)
W[rrB,1L] <- eps;
W[rrA,2L] <- eps;
status <- 2L;
}
} else {
# Normal case
aux <- colSums(H);
aux <- rep(aux, times=2L);
dim(aux) <- c((length(aux)/2), 2);
aux <- t(aux);
H <- 2 * H/aux;
H[is.na(H)] <- 0;
W <- t(miqr.solve(t(H),t(V)));
W[W < 0] <- eps;
# Sometimes, there are errors in the genotyping... Check correlation
corDiff <- cor(W[,1L],W[rrBA,2L]) - cor(W[,1L],W[,2L]);
if (is.na(corDiff) || corDiff < 0.1) {
#print('Too large Correlation')
#print('Solving for one allele')
W0 <- W;
W[,1L] <- rowMedians(W0);
W[,2L] <- W0[rrBA,1L];
H <- miqr.solve(W, V);
H[H < 0] <- 0;
status <- 1L;
}
}
# Sanity check (may be removed in the future /HB 2009-03-24)
stopifnot(nrow(W) == K && ncol(W) == 2L);
stopifnot(nrow(H) == 2L && ncol(H) == I);
list(W=W, H=H, status=status);
} # WHInit()
############################################################################
# HISTORY:
# 2009-03-24 [HB]
# o Added Rdoc comments.
# o Cleaned up code.
# 2009-02-02 [MO]
# o Change some code and make it more efficient
# 2009-01-28 [HB]
# o BUG FIX: The code of WHInit() assumed 20 probes in one place.
############################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.