Description Usage Arguments Value Iteration History Examples
Least Absolute Deviations (LAD) is an alternative to traditional Least Sqaures by using cost function
\textrm{min}_x ~ \|Ax-b\|_1
to use \ell_1 norm instead of square loss for robust estimation of coefficient.
1 2 3 4 5 6 7 8 9 10 |
A |
an (m\times n) regressor matrix |
b |
a length-m response vector |
xinit |
a length-n vector for initial value |
rho |
an augmented Lagrangian parameter |
alpha |
an overrelaxation parameter in [1,2] |
abstol |
absolute tolerance stopping criterion |
reltol |
relative tolerance stopping criterion |
maxiter |
maximum number of iterations |
a named list containing
a length-n solution vector
dataframe recording iteration numerics. See the section for more details.
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,
object (cost) function value
norm of primal residual
norm of dual residual
feasibility tolerance for primal feasibility condition
feasibility tolerance for dual feasibility condition
In accordance with the paper, iteration stops when both r_norm
and s_norm
values
become smaller than eps_pri
and eps_dual
, respectively.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## generate data
m = 1000
n = 100
A = matrix(rnorm(m*n),nrow=m)
x = 10*matrix(rnorm(n))
b = A%*%x
## add impulsive noise to 10% of positions
idx = sample(1:m, round(m/10))
b[idx] = b[idx] + 100*rnorm(length(idx))
## run the code
output = admm.lad(A,b)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.