Description Usage Arguments Value Iteration History Author(s) References Examples
View source: R/admm.genlasso.R
Generalized LASSO is solving the following equation,
\textrm{min}_x ~ \frac{1}{2}\|Ax-b\|_2^2 + λ \|Dx\|_1
where the choice of regularization matrix D leads to different problem formulations.
1 2 3 4 5 6 7 8 9 10 11 | admm.genlasso(
A,
b,
D = diag(length(b)),
lambda = 1,
rho = 1,
alpha = 1,
abstol = 1e-04,
reltol = 0.01,
maxiter = 1000
)
|
A |
an (m\times n) regressor matrix |
b |
a length-m response vector |
D |
a regularization matrix of n columns |
lambda |
a regularization parameter |
rho |
an augmented Lagrangian parameter |
alpha |
an overrelaxation parameter in [1,2] |
abstol |
absolute tolerance stopping criterion |
reltol |
relative tolerance stopping criterion |
maxiter |
maximum number of iterations |
a named list containing
a length-n solution vector
dataframe recording iteration numerics. See the section for more details.
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,
object (cost) function value
norm of primal residual
norm of dual residual
feasibility tolerance for primal feasibility condition
feasibility tolerance for dual feasibility condition
In accordance with the paper, iteration stops when both r_norm
and s_norm
values
become smaller than eps_pri
and eps_dual
, respectively.
Xiaozhi Zhu
tibshirani_solution_2011ADMM
\insertRefzhu_augmented_2017ADMM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ## generate sample data
m = 100
n = 200
p = 0.1 # percentange of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
}
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))
D = diag(n);
## set regularization lambda value
regval = 0.1*Matrix::norm(t(A)%*%b, 'I')
## solve LASSO via reducing from Generalized LASSO
output = admm.genlasso(A,b,D,lambda=regval) # set D as identity matrix
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.