| admm.enet | R Documentation |
Elastic Net regularization is a combination of \ell_2 stability and
\ell_1 sparsity constraint simulatenously solving the following,
\textrm{min}_x ~ \frac{1}{2}\|Ax-b\|_2^2 + \lambda_1 \|x\|_1 + \lambda_2 \|x\|_2^2
with nonnegative constraints \lambda_1 and \lambda_2. Note that if both lambda values are 0,
it reduces to least-squares solution.
admm.enet(
A,
b,
lambda1 = 1,
lambda2 = 1,
rho = 1,
abstol = 1e-04,
reltol = 0.01,
maxiter = 1000
)
A |
an |
b |
a length- |
lambda1 |
a regularization parameter for |
lambda2 |
a regularization parameter for |
rho |
an augmented Lagrangian parameter |
abstol |
absolute tolerance stopping criterion |
reltol |
relative tolerance stopping criterion |
maxiter |
maximum number of iterations |
a named list containing
a length-n solution vector
dataframe recording iteration numerics. See the section for more details.
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,
object (cost) function value
norm of primal residual
norm of dual residual
feasibility tolerance for primal feasibility condition
feasibility tolerance for dual feasibility condition
In accordance with the paper, iteration stops when both r_norm and s_norm values
become smaller than eps_pri and eps_dual, respectively.
Xiaozhi Zhu
zou_regularization_2005aADMM
admm.lasso
## generate underdetermined design matrix
m = 50
n = 100
p = 0.1 # percentange of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
}
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))
## run example with both regularization values = 1
output = admm.enet(A, b, lambda1=1, lambda2=1)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.