Description Usage Arguments Value Iteration History Author(s) References See Also Examples
Elastic Net regularization is a combination of \ell_2 stability and \ell_1 sparsity constraint simulatenously solving the following,
\textrm{min}_x ~ \frac{1}{2}\|Ax-b\|_2^2 + λ_1 \|x\|_1 + λ_2 \|x\|_2^2
with nonnegative constraints λ_1 and λ_2. Note that if both lambda values are 0, it reduces to least-squares solution.
1 2 3 4 5 6 7 8 9 10 | admm.enet(
A,
b,
lambda1 = 1,
lambda2 = 1,
rho = 1,
abstol = 1e-04,
reltol = 0.01,
maxiter = 1000
)
|
A |
an (m\times n) regressor matrix |
b |
a length-m response vector |
lambda1 |
a regularization parameter for \ell_1 term |
lambda2 |
a regularization parameter for \ell_2 term |
rho |
an augmented Lagrangian parameter |
abstol |
absolute tolerance stopping criterion |
reltol |
relative tolerance stopping criterion |
maxiter |
maximum number of iterations |
a named list containing
a length-n solution vector
dataframe recording iteration numerics. See the section for more details.
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,
object (cost) function value
norm of primal residual
norm of dual residual
feasibility tolerance for primal feasibility condition
feasibility tolerance for dual feasibility condition
In accordance with the paper, iteration stops when both r_norm
and s_norm
values
become smaller than eps_pri
and eps_dual
, respectively.
Xiaozhi Zhu
zou_regularization_2005aADMM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ## generate underdetermined design matrix
m = 50
n = 100
p = 0.1 # percentange of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
}
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))
## run example with both regularization values = 1
output = admm.enet(A, b, lambda1=1, lambda2=1)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.