Description Usage Arguments Value Iteration History References Examples
Given a data matrix M, it finds a decomposition
\textrm{min}~\|L\|_*+λ \|S\|_1\quad \textrm{s.t.}\quad L+S=M
where \|L\|_* represents a nuclear norm for a matrix L and \|S\|_1 = ∑ |S_{i,j}|, and λ a balancing/regularization parameter. The choice of such norms leads to impose low-rank property for L and sparsity on S.
1 2 3 4 5 6 7 |
M |
an (m\times n) data matrix |
lambda |
a regularization parameter |
mu |
an augmented Lagrangian parameter |
tol |
relative tolerance stopping criterion |
maxiter |
maximum number of iterations |
a named list containing
an (m\times n) low-rank matrix
an (m\times n) sparse matrix
dataframe recording iteration numerics. See the section for more details.
For RPCA implementation, we chose a very simple stopping criterion
\|M-(L_k+S_k)\|_F ≤ tol*\|M\|_F
for each iteration step k. So for this method, we provide a vector of only relative errors,
relative error computed
candes_robust_2011aADMM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## generate data matrix from standard normal
X = matrix(rnorm(20*5),nrow=5)
## try different regularization values
out1 = admm.rpca(X, lambda=0.01)
out2 = admm.rpca(X, lambda=0.1)
out3 = admm.rpca(X, lambda=1)
## visualize sparsity
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
image(out1$S, main="lambda=0.01")
image(out2$S, main="lambda=0.1")
image(out3$S, main="lambda=1")
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.