Nothing
#' @title Augmented Inverse Probability Weighting Base Class (AIPW_base)
#'
#' @description A base class for AIPW that implements the common methods, such as \code{summary()} and \code{plot.p_score()}, inheritted by [AIPW] and [AIPW_tmle] class
#'
#' @docType class
#'
#' @importFrom R6 R6Class
#'
#' @return \code{AIPW} base object
#' @seealso [AIPW] and [AIPW_tmle]
#' @format \code{\link{R6Class}} object.
#' @export
AIPW_base <- R6::R6Class(
"AIPW_base",
portable = TRUE,
class = TRUE,
public = list(
#-------------------------public fields-----------------------------#
#Number of observations
n = NULL,
#Number of exposed
n_A1 = NULL,
#Number ofunexposed
n_A0 = NULL,
#Fit the outcome model stratified by exposure status (only applicable to AIPW class or manual setup)
stratified_fitted = FALSE,
#Components for estimating the influence functions of all observations to calculate average causal effects
obs_est = list(mu0 = NULL,
mu1 = NULL,
mu = NULL,
raw_p_score = NULL,
p_score = NULL,
ip_weights = NULL,
aipw_eif1 = NULL,
aipw_eif0 = NULL),
#ATE: Risk difference, risk ratio, odds ratio and variance-covariance matrix for SE calculation
estimates = list(risk_A1 = NULL,
risk_A0 = NULL,
RD = NULL,
RR = NULL,
OR = NULL,
sigma_covar = NULL),
#ATT: Risk difference
ATT_estimates = list(RD = NULL),
#ATC: Risk difference
ATC_estimates = list(RD = NULL),
#A matrix contains RD, RR and OR with their SE and 95%CI
result = NULL,
#A density plot of propensity scores by exposure status (`ggplot2::geom_density`)
g.plot = NULL,
#A box plot of inverse probability weights using truncated propensity scores by exposure status (`ggplot2::geom_boxplot`)
ip_weights.plot = NULL,
#-------------------------constructor-----------------------------#
initialize = function(Y=NULL, A=NULL,verbose=TRUE){
#save input into private fields
private$Y=as.numeric(Y)
private$A=as.numeric(A)
private$observed = as.numeric(!is.na(private$Y))
private$verbose=verbose
#check data length
if (length(private$Y)!=length(private$A)){
stop("Please check the dimension of the data")
}
#detect outcome is binary or continuous
if (length(unique(private$Y[!is.na(private$Y)]))==2) {
private$Y.type = 'binomial'
} else {
private$Y.type = 'gaussian'
}
#check missing exposure
if (any(is.na(private$A))){
stop("Missing exposure is not allowed.")
}
#check missing outcome
if (any(private$observed == 0)){
warning("Missing outcome is detected. Analysis assumes missing at random (MAR).")
private$Y.missing = TRUE
}
#setup
private$AxObserved = private$A * private$observed #I(A=a, observed==1)
self$n <- length(private$A)
self$n_A1 <- sum(private$A==1)
self$n_A0 <- sum(private$A==0)
self$obs_est$mu0 <- rep(NA,self$n)
self$obs_est$mu1 <- rep(NA,self$n)
self$obs_est$mu <- rep(NA,self$n)
self$obs_est$raw_p_score <- rep(NA,self$n)
},
#-------------------------summary method-----------------------------#
summary = function(g.bound=0.025){
#p_score truncation
if (length(g.bound) > 2){
warning('More than two `g.bound` are provided. Only the first two will be used.')
g.bound = g.bound[1:2]
} else if (length(g.bound) ==1 & g.bound[1] >= 0.5){
stop("`g.bound` >= 0.5 is not allowed when only one `g.bound` value is provided")
}
private$g.bound=g.bound
#check g.bound value
if (!is.numeric(private$g.bound)){
stop("`g.bound` must be numeric")
} else if (max(private$g.bound) > 1 | min(private$g.bound) < 0){
stop("`g.bound` must between 0 and 1")
}
self$obs_est$p_score <- private$.bound(self$obs_est$raw_p_score)
#inverse probability weights
self$obs_est$ip_weights <- (as.numeric(private$A==1)/self$obs_est$p_score) + (as.numeric(private$A==0)/(1-self$obs_est$p_score))
##------AIPW est------##
#### ATE EIF
self$obs_est$aipw_eif1 <- ifelse(private$observed == 1,
(as.numeric(private$A[private$observed==1]==1)/self$obs_est$p_score[private$observed==1])*
(private$Y[private$observed==1] - self$obs_est$mu[private$observed==1]) +
self$obs_est$mu1[private$observed==1],
0)
self$obs_est$aipw_eif0 <- ifelse(private$observed == 1,
(as.numeric(private$A[private$observed==1]==0)/(1-self$obs_est$p_score[private$observed==1]))*
(private$Y[private$observed==1] - self$obs_est$mu[private$observed==1]) +
self$obs_est$mu0[private$observed==1],
0)
root_n <- sqrt(self$n)
## risk for the treated and controls
self$estimates$risk_A1 <- private$get_RD(self$obs_est$aipw_eif1, 0, root_n)
self$estimates$risk_A0 <- private$get_RD(self$obs_est$aipw_eif0, 0, root_n)
## risk difference
self$estimates$RD <- private$get_RD(self$obs_est$aipw_eif1, self$obs_est$aipw_eif0, root_n)
#results on additive scales
self$result <- cbind(matrix(c(self$estimates$risk_A1, self$estimates$risk_A0,
self$estimates$RD), nrow=3, byrow=T),
c( self$n_A1, self$n_A0,rep(self$n,1)))
row.names(self$result) <- c("Risk of exposure", "Risk of control","Risk Difference")
colnames(self$result) <- c("Estimate","SE","95% LCL","95% UCL","N")
if (private$Y.type == 'binomial'){
## var-cov mat for rr and or calculation
self$estimates$sigma_covar <- private$get_sigma_covar(self$obs_est$aipw_eif0,self$obs_est$aipw_eif1)
## risk ratio
self$estimates$RR <- private$get_RR(self$obs_est$aipw_eif1,self$obs_est$aipw_eif0, self$estimates$sigma_covar, root_n)
## odds ratio
self$estimates$OR <- private$get_OR(self$obs_est$aipw_eif1,self$obs_est$aipw_eif0, self$estimates$sigma_covar, root_n)
#w/ results on the multiplicative scale
mult_result <- cbind(matrix(c(self$estimates$RR, self$estimates$OR),nrow=2,byrow=T),self$n)
row.names(mult_result) <- c("Risk Ratio", "Odds Ratio")
self$result <- rbind(self$result, mult_result)
}
#### ATT/ATC
if (self$stratified_fitted) {
#ATT
self$ATT_estimates$RD <- private$get_ATT_RD(mu0 = self$obs_est$mu0[private$observed==1],
p_score = self$obs_est$p_score[private$observed==1],
A_level = 1, root_n=root_n, ATC = F)
self$ATC_estimates$RD <- private$get_ATT_RD(mu0 = self$obs_est$mu1[private$observed==1],
p_score = 1-self$obs_est$p_score[private$observed==1],
A_level = 0, root_n=root_n, ATC = T)
ATT_ATC_result <- matrix(c(self$ATT_estimates$RD, self$n,
self$ATC_estimates$RD, self$n), nrow = 2,byrow = T)
row.names(ATT_ATC_result) <- c("ATT Risk Difference","ATC Risk Difference")
self$result <- rbind(self$result, ATT_ATC_result)
}
if (private$verbose){
print(self$result,digit=3)
}
invisible(self)
},
#-------------------------plot.p_score method-----------------------------#
plot.p_score = function(print.ip_weights = F){
#check if ggplot2 library is loaded
if (!any(names(sessionInfo()$otherPkgs) %in% c("ggplot2"))){
stop("`ggplot2` package is not loaded.")
}
plot_data_A = factor(private$A, levels = 0:1)
#input check
if (any(is.na(self$obs_est$raw_p_score))){
stop("Propensity scores are not estimated.")
} else if (is.null(self$obs_est$p_score)) {
#p_score before truncation (estimated ps)
plot_data = data.frame(A = plot_data_A,
p_score= self$obs_est$raw_p_score,
trunc = "Not truncated")
message("ATE has not been calculated.")
} else {
plot_data = rbind(data.frame(A = plot_data_A,
p_score= self$obs_est$raw_p_score,
trunc = "Not truncated"),
data.frame(A = plot_data_A,
p_score= self$obs_est$p_score,
trunc = "Truncated"))
}
self$g.plot = ggplot2::ggplot(data = plot_data,ggplot2::aes(x = p_score, group = A, color = A, fill=A)) +
ggplot2::geom_density(alpha=0.5) +
ggplot2::scale_x_continuous(limits = c(0,1)) +
ggplot2::facet_wrap(~trunc) +
ggtitle("Propensity scores by exposure status") +
theme_bw() +
theme(legend.position = 'bottom')
xlab('Propensity Scores')
print(self$g.plot)
invisible(self)
}
,
#-------------------------plot.ip_weights method-----------------------------#
plot.ip_weights = function(){
#check if ggplot2 library is loaded
if (!any(names(sessionInfo()$otherPkgs) %in% c("ggplot2"))){
stop("`ggplot2` package is not loaded.")
}
plot_data_A = factor(private$A, levels = 0:1)
#input check
if (any(is.na(self$obs_est$raw_p_score))){
stop("Propensity scores are not estimated.")
} else if (is.null(self$obs_est$p_score)) {
stop("ATE has not been calculated.")
} else {
ipw_plot_data = data.frame(A = plot_data_A, ip_weights= self$obs_est$ip_weights)
self$ip_weights.plot = ggplot2::ggplot(data = ipw_plot_data, ggplot2::aes(y = ip_weights, x = A, fill = A)) +
ggplot2::geom_boxplot(alpha=0.5) +
ggtitle("IP-weights using truncated propensity scores by exposure status") +
theme_bw() +
ylab('Inverse Probablity Weights') +
coord_flip() +
theme(legend.position = 'bottom')
print(self$ip_weights.plot)
}
invisible(self)
}
),
#-------------------------private fields and methods----------------------------#
private = list(
#input
Y=NULL,
A=NULL,
observed=NULL,
AxObserved = NULL,
verbose=NULL,
g.bound=NULL,
#outcome type
Y.type = NULL,
Y.missing = FALSE,
#private methods
#Use individual estimates of efficient influence functions (obs_est$aipw_eif0 & obs_est$aipw_eif0) to calculate RD, RR and OR with SE and 95CI%
get_RD = function(aipw_eif1,aipw_eif0,root_n){
est <- mean(aipw_eif1 - aipw_eif0)
se <- stats::sd(aipw_eif1 - aipw_eif0)/root_n
ci <- get_ci(est,se,ratio=F)
output = c(est, se, ci)
names(output) = c("Estimate","SE","95% LCL","95% UCL")
return(output)
},
get_RR = function(aipw_eif1,aipw_eif0,sigma_covar,root_n){
est <- mean(aipw_eif1)/mean(aipw_eif0)
se <- sqrt((sigma_covar[1,1]/(mean(aipw_eif0)^2)) -
(2*sigma_covar[1,2]/(mean(aipw_eif1)*mean(aipw_eif0))) +
(sigma_covar[2,2]/mean(aipw_eif1)^2) -
(2*sigma_covar[1,2]/(mean(aipw_eif1)*mean(aipw_eif0))))/root_n
ci <- get_ci(est,se,ratio=T)
output = c(est, se, ci)
names(output) = c("Estimate","SE","95% LCL","95% UCL")
return(output)
},
get_OR = function(aipw_eif1,aipw_eif0,sigma_covar,root_n){
est <- (mean(aipw_eif1)/(1-mean(aipw_eif1))) / (mean(aipw_eif0)/(1-mean(aipw_eif0)))
se <- sqrt((sigma_covar[1,1]/((mean(aipw_eif0)^2)*(mean(1-aipw_eif0)^2))) -
(2*sigma_covar[1,2]/(mean(aipw_eif1)*mean(aipw_eif0)*mean(1-aipw_eif1)*mean(1-aipw_eif0))) +
(sigma_covar[2,2]/((mean(aipw_eif1)^2)*(mean(1-aipw_eif1)^2))) -
(2*sigma_covar[1,2]/(mean(aipw_eif1)*mean(aipw_eif0)
*mean(1-aipw_eif1)*mean(1-aipw_eif0))))/root_n
ci <- get_ci(est,se,ratio=T)
output = c(est, se, ci)
names(output) = c("Estimate","SE","95% LCL","95% UCL")
return(output)
},
get_sigma_covar = function(aipw_eif0,aipw_eif1){
mat <- matrix(c(stats::var(aipw_eif0),
stats::cov(aipw_eif0,aipw_eif1),
stats::cov(aipw_eif1,aipw_eif0),
stats::var(aipw_eif1)),nrow=2)
return(mat)
},
#ATT/ATC calculation
get_ATT_RD = function(A =private$A[private$observed==1], Y = private$Y[private$observed==1],
mu0, p_score, A_level, root_n, ATC = F){
I_A = (A==A_level) / mean(A==A_level)
I_A_com = (1-A==A_level) / mean(1-(A==A_level))
eif <- I_A*Y - (I_A*(mu0) + I_A_com*(Y-mu0)*p_score/(1-p_score))
est <- mean(eif)
if (ATC){
est <- -1 * est
}
se <- stats::sd(eif - I_A*est)/root_n
ci <- get_ci(est,se,ratio=F)
output = c(est, se, ci)
names(output) = c("Estimate","SE","95% LCL","95% UCL")
return(output)
},
#setup the bounds for the propensity score to ensure the balance
.bound = function(p_score,bound = private$g.bound){
if (length(bound) == 1){
res <- base::ifelse(p_score<bound, bound,
base::ifelse(p_score > (1-bound), (1-bound) ,p_score))
} else {
res <- base::ifelse(p_score< min(bound), min(bound),
base::ifelse(p_score > max(bound), max(bound), p_score))
}
return(res)
}
)
)
#' @name summary
#' @aliases summary.AIPW_base
#' @title Summary of the average treatment effects from AIPW
#'
#' @description
#' Calculate average causal effects in RD, RR and OR in the fitted [AIPW] or [AIPW_tmle] object using the estimated efficient influence functions
#'
#' @section R6 Usage:
#' \code{$summary(g.bound = 0.025)} \cr
#' \code{$summary(g.bound = c(0.025,0.975))}
#'
#' @param g.bound Value between \[0,1\] at which the propensity score should be truncated.
#' Propensity score will be truncated to \eqn{[g.bound, 1-g.bound]} when one g.bound value is provided, or to \eqn{[min(g.bound), max(g.bound)]} when two values are provided.
#' \strong{Defaults to 0.025}.
#'
#' @seealso [AIPW] and [AIPW_tmle]
#'
#' @return `estimates` and `result` (public variables): Risks, Average treatment effect in RD, RR and OR.
NULL
#' @name plot.p_score
#' @title Plot the propensity scores by exposure status
#'
#' @description
#' Plot and check the balance of propensity scores by exposure status
#'
#' @section R6 Usage:
#' \code{$plot.p_plot()}
#'
#' @seealso [AIPW] and [AIPW_tmle]
#'
#' @return `g.plot` (public variable): A density plot of propensity scores by exposure status (`ggplot2::geom_density`)
NULL
#' @name plot.ip_weights
#' @title Plot the inverse probability weights using truncated propensity scores by exposure status
#'
#' @description
#' Plot and check the balance of propensity scores by exposure status
#'
#' @section R6 Usage:
#' \code{$plot.ip_weights()}
#'
#' @seealso [AIPW] and [AIPW_tmle]
#'
#' @return `ip_weights.plot` (public variable): A box plot of inverse probability weights using truncated propensity scores by exposure status (`ggplot2::geom_boxplot`)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.