Nothing
#' Perform Likelihood ratio test
#'
#' @description
#' `lik.ratio()` performs the Likelihood ratio test and is used in chapters 12 and 13 of "Applied Nonparametric Statistical Methods" (5th edition)
#'
#' @param x Factor of same length as y
#' @param y Factor of same length as x
#' @param max.exact.cases Maximum number of cases allowed for exact calculations (defaults to `10`)
#' @param nsims.mc Number of Monte Carlo simulations to be performed (defaults to `100000`)
#' @param seed Random number seed to be used for Monte Carlo simulations (defaults to `NULL`)
#' @param do.exact Boolean indicating whether or not to perform exact calculations (defaults to `TRUE`)
#' @param do.asymp Boolean indicating whether or not to perform asymptotic calculations (defaults to `FALSE`)
#' @param do.mc Boolean indicating whether or not to perform Monte Carlo calculations (defaults to `FALSE`)
#' @returns An ANSMtest object with the results from applying the function
#' @examples
#' # Example 12.2 from "Applied Nonparametric Statistical Methods" (5th edition)
#' lik.ratio(ch12$infection.site, ch12$district, do.exact = FALSE, do.asymp = TRUE)
#'
#' # Example 13.12 from "Applied Nonparametric Statistical Methods" (5th edition)
#' chemo.side.effect.3 <- ch13$chemo.side.effect
#' levels(chemo.side.effect.3) <- list("Side-effect" = c("Hair loss",
#' "Visual impairment", "Hair loss & Visual impairment"), "None" = "None")
#' lik.ratio(ch13$chemo.drug, chemo.side.effect.3, seed = 1)
#'
#' @importFrom stats complete.cases chisq.test r2dtable pchisq
#' @export
lik.ratio <-
function(x, y, max.exact.cases = 10, nsims.mc = 100000,
seed = NULL, do.exact = TRUE, do.asymp = FALSE, do.mc = FALSE) {
stopifnot(is.factor(x), is.factor(y), nlevels(x) > 1, nlevels(y) > 1,
length(x) == length(y),
is.numeric(max.exact.cases), length(max.exact.cases) == 1,
is.numeric(nsims.mc), length(nsims.mc) == 1,
is.numeric(seed) | is.null(seed),
length(seed) == 1 | is.null(seed),
is.logical(do.exact) == TRUE, is.logical(do.asymp) == TRUE,
is.logical(do.mc) == TRUE)
#labels
varname1 <- deparse(substitute(x))
varname2 <- deparse(substitute(y))
#unused arguments
H0 <- NULL
cont.corr <- NULL
alternative <- NULL
CI.width <- NULL
do.CI <- FALSE
#default outputs
pval <- NULL
pval.stat <- NULL
pval.note <- NULL
pval.asymp <- NULL
pval.asymp.stat <- NULL
pval.asymp.note <- NULL
pval.exact <- NULL
pval.exact.stat <- NULL
pval.exact.note <- NULL
pval.mc <- NULL
pval.mc.stat <- NULL
pval.mc.note <- NULL
actualCIwidth.exact <- NULL
CI.exact.lower <- NULL
CI.exact.upper <- NULL
CI.exact.note <- NULL
CI.asymp.lower <- NULL
CI.asymp.upper <- NULL
CI.asymp.note <- NULL
CI.mc.lower <- NULL
CI.mc.upper <- NULL
CI.mc.note <- NULL
test.note <- NULL
#prepare
complete.cases.id <- complete.cases(x, y)
x <- x[complete.cases.id] #remove missing cases
y <- y[complete.cases.id] #remove missing cases
x <- droplevels(x)
y <- droplevels(y)
n <- length(x)
tab.n <- nlevels(x) * nlevels(y)
rtots <- table(x)
ctots <- table(y)
suppressWarnings({
chisq.test.out <- chisq.test(x, y, correct = FALSE)
})
obs <- chisq.test.out$observed
exp <- chisq.test.out$expected
stat <- 2 * sum(obs[obs != 0] * log(obs[obs != 0] / exp[obs != 0]))
#give mc output if exact not possible
if (do.exact && n > max.exact.cases){
do.mc <- TRUE
}
#exact p-value
if(do.exact && n <= max.exact.cases){
pval.exact.stat <- stat
permutations <- perms(n)
n.perms <- dim(permutations)[1]
pval.exact <- 0
for (i in 1:n.perms){
suppressWarnings({
chisq.test.out.tmp <- chisq.test(x[permutations[i,]], y,
correct = FALSE)
})
obs.tmp <- chisq.test.out.tmp$observed
exp.tmp <- chisq.test.out.tmp$expected
obs <- obs[obs != 0]
G2.tmp <- 2 * sum(obs.tmp[obs.tmp != 0] *
log(obs.tmp[obs.tmp != 0] /
exp.tmp[obs.tmp != 0]))
if (G2.tmp >= pval.exact.stat){
pval.exact <- pval.exact + 1 / n.perms
}
}
}
#Monte Carlo p-value
if (do.mc){
pval.mc.stat <- stat
if (!is.null(seed)){set.seed(seed)}
pval.mc <- 0
for (i in 1:nsims.mc){
obs.tmp <- r2dtable(1, rtots, ctots)[[1]]
G2.tmp <- 2 * sum(obs.tmp[obs.tmp != 0] *
log(obs.tmp[obs.tmp != 0] / exp[obs.tmp != 0]))
if (G2.tmp >= pval.mc.stat){
pval.mc <- pval.mc + 1 / nsims.mc
}
}
}
#asymptotic p-value
if (do.asymp){
pval.asymp.stat <- stat
pval.asymp <- pchisq(pval.asymp.stat, (nlevels(x) - 1) * (nlevels(y) - 1),
lower.tail = FALSE)
}
#check if message needed
if (!do.exact && !do.mc && !do.asymp) {
test.note <- paste("Neither exact, asymptotic nor Monte Carlo test requested")
}else if (do.exact && n > max.exact.cases) {
test.note <- paste0("NOTE: Number of useful cases greater than current ",
"maximum allowed for exact calculations\nrequired for ",
"exact test (max.exact.cases = ",
sprintf("%1.0f", max.exact.cases), ") so Monte ",
"Carlo p-value given")
}
#define hypotheses
H0 <- paste0("H0: ", varname1, " and ", varname2, " are independent\n",
"H1: ", varname1, " and ", varname2, " are not independent\n")
#return
result <- list(title = "Likelihood ratio test", varname1 = varname1,
varname2 = varname2, H0 = H0,
alternative = alternative, cont.corr = cont.corr, pval = pval,
pval.stat = pval.stat, pval.note = pval.note,
pval.exact = pval.exact, pval.exact.stat = pval.exact.stat,
pval.exact.note = pval.exact.note, targetCIwidth = CI.width,
actualCIwidth.exact = actualCIwidth.exact,
CI.exact.lower = CI.exact.lower,
CI.exact.upper = CI.exact.upper, CI.exact.note = CI.exact.note,
pval.asymp = pval.asymp, pval.asymp.stat = pval.asymp.stat,
pval.asymp.note = pval.asymp.note,
CI.asymp.lower = CI.asymp.lower,
CI.asymp.upper = CI.asymp.upper, CI.asymp.note = CI.asymp.note,
pval.mc = pval.mc, pval.mc.stat = pval.mc.stat,
nsims.mc = nsims.mc, pval.mc.note = pval.mc.note,
CI.mc.lower = CI.mc.lower, CI.mc.upper = CI.mc.upper,
CI.mc.note = CI.mc.note,
test.note = test.note)
class(result) <- "ANSMtest"
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.