R/ant.R

# Copyright (C) 2018  Sebastian Sosa, Ivan Puga-Gonzalez, Hu Feng He, Xiaohua Xie, Cédric Sueur
#
# This file is part of Animal Network Toolkit Software (ANTs).
#
# ANT is a free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# ANT is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

#' @title ANT diagnostic for permuted statistics
#' @param x an ANT object from functions: stat.t, stat.c, stat.lm, stat.glm, stat.glmm pr a numeric vector or a data frame with only numeric values.
#' @param progress a Boolean indicating if functions output should be printed in addition to the return object.
#' @description ANT method to make a diagnostic of all ANT permutation tests. This method adapts the diagnostic results according to the data input. The
#' output is adapted to the type of test run. However, some outputs are common to all tests.
#' @return
#' A list of two elements fot stat.cor, stat.t functions:
#' \itemize{
#' \item A data frame with the permuted p-values (left side and right side), the confidence interval (25, 50 or 95) and the mean of the posterior distribution of the statistics of interest according to the statistical test (coefficient of correlation, t of students, or estimate(s))
#' \item An histogram of the posterior distribution of the statistics of interest according to the statistical test.
#' }
#' #' A list of four elements fot stat.lm, stat.glm, stat.glmm functions:
#' \itemize{
#' \item A data frame with the orginal stats of the model, and permuted p-values (left side and right side), the confidence interval (25, 50 or 95) and the mean of the posterior distribution of the statistics of interest according to the statistical test (coefficient of correlation, t of students, or estimate(s))
#' \item Diagnostic plot of the original model
#' \item An histogram of the posterior distribution of the statistics of interest according to the statistical test.
#' \item a vector of the permutations that generates errors and for which new permutations were performed.
#' }
#' @author Sebastian Sosa, Ivan Puga-Gonzalez.
#' @export
#' @examples
#' t=met.strength(sim.m,sim.df,1) # Computing network metric
#' t=perm.net.nl(t,labels='age',rf=NULL,nperm=10,progress=FALSE) # Node label permutations
#' r.c=stat.cor(t,'age','strength',progress=FALSE) # Permuted correlation test
#' r=ant(r.c)
setGeneric(name = "ant", ant <- function(x, progress = FALSE) {
  op <- par(no.readonly = TRUE)
  on.exit(par(op))
  # Check if argument x is an ANTs object
  if (!is.null(attr(x, "class"))) {
    # Check if argument x is an ANTs object from function stat.c----------------------
    if (attr(x, "class") == "ant cor") {
      # Separate correlation from the original data (first value) from the permuted ones----------------------
      obs <- x[, 1][1]
      v_perm <- x[, 1][-1]

      # Compute permuted p-values----------------------
      p <- stat.p(c(obs,v_perm))
      
      # Compute confidence interval--------------------
      stat.ci <- quantile(v_perm, c(0.05, 0.95))
      
      # Compute mean posterior distribution-------------
      m <- mean(v_perm)

      # Create dataframe with permuted p-values, 95% confidence interval and mean posterior distribution----------------------
      df <- as.data.frame(cbind(obs, p[1], p[2], p[3], stat.ci[1], stat.ci[2], m))
      colnames(df) <- (c("Observed correlation", "p.left", "p.right",  "p.two.sides", "95ci lower", "95ci upper", "mean"))
      rownames(df) <- c("statistics")
      diag <- df

      vis.post.distribution(c(obs, v_perm), legend = FALSE, main = paste("Posterior distribution of ", attributes(r.c)$comment, sep = ""))
      
      # Print dataframe & return data frame and plot----------------------
      if(progress){
        cat("Correlation test for", length(v_perm), "perm :", "\n")
        cat("Observed correlation: ", obs, "\n")
        cat("P-values and effect sizes: \n")
        print(df)
      }
      
      invisible(return(diag))
    }

    # Check if argument x is an ANTs object from function stat.t----------------------
    if (attr(x, "class") == "ant t-test") {
      v <- do.call("rbind", x[[2]][, 1])
      # Separate correlation from the original data (first value) from the permuted ones----------------------
      obs <- x[[1]]$statistic
      v_perm <- (x$permutation)
 

      # Compute permuted p-values----------------------
      v_perm <- unlist(x$permutation)
      p <- stat.p(c(obs,v_perm))
      
      # Compute confidence interval--------------------
      stat.ci <- quantile(v_perm, c(0.05, 0.95))
      
      # Compute mean posterior distribution-------------
      m <- mean(v_perm)
      
      # Create dataframe with permuted p-values, 95% confidence interval and mean posterior distribution----------------------     
      df <- as.data.frame(cbind(obs, p[1], p[2], p[3], stat.ci[1], stat.ci[2], m))
      colnames(df) <- (c("t observed", "p.left","p.right",  "p.two.sides", "95ci lower", "95ci upper", "mean"))
      rownames(df) <- c("statistics")
      diag<- df

      vis.post.distribution(c(obs, v_perm), legend = FALSE, main = paste("Posterior distribution of two sided t statistic"))

      # Print dataframe & return data frame and plot----------------------
      if(progress){
        cat("t test for", length(v_perm), "perm :", "\n")
        cat("t observed: ", obs, "\n")
        cat("P-values and effect sizes: \n")
        print(df)
      }
      
      invisible(return(diag))
    }

    # Check if argument x is an ANTs object from function stat.lm, stat.glm or stat.glmm----------------------
    if (attr(x, "class") == "ant lm" | attr(x, "class") == "ant glm" | attr(x, "class") == "ant glmm"
        | attr(x, "class") == "ant glmm parallel") {

      if(attr(x, "class") == "ant glmm parallel"){
        result = NULL
        for (a in 1:length(x[[1]])) {
          rstudioapi::jobRemove(x[[2]][a])# remove jobs
          if(a == 1){
            result = get(x[[1]][a], envir = .GlobalEnv)
          }else{
            result$permutations = rbind(result$permutations,
                                        get(x[[1]][a], envir = .GlobalEnv)$permutations)
          }
          rm(list = (x[[1]][a]) , envir = .GlobalEnv)# remove created data
        }
        x = result
      }
      
      # Extract original model----------------------
      s <- x$Original.model

      # Extract model coefficients----------------------
      obs <- x$Original.model$coefficients[, 1]
      
      # Extract permuted coefficients----------------------
      v_perms <- x$permutations

      # Create dataframe with permuted p-values, 95% confidence interval and mean posterior distribution----------------------     
      stat <- NULL
      for (a in 1:ncol(v_perms)) {
        r <- stat.ci(v_perms[, a])
        p <- stat.p(c(obs[a],v_perms[, a]))
        stat[[a]] <- data.frame(
          p[1], p[2], p[3],
          r[1], r[2],
          mean(v_perms[, a])
        )
      }
      stat <- do.call("rbind", stat)
      colnames(stat) <- c("p.left", "p.rigth",   "p.two.sides", "lower.ci", "uper.ci", "mean")
      rownames(stat) <- colnames(v_perms)

      # Add permuted p-values, 95% confidence interval and mean posterior distribution to original model----------------------
      s$coefficients <- cbind(s$coefficients, stat)

      # Extract model family and formula----------------------
      attr(x$Original.model, "family") <- attributes(x)$family
      attr(x$Original.model, "formula") <- attributes(x)$formula

      # Model diagnostic (qqplot and fitted values versus residuals)----------------------
      stat.model.diag(x$Original.model)

      vis.post.distribution(as.data.frame(rbind(obs, v_perms)), legend = FALSE)
      
      
      # Return results 1) model summary (with permuted statistics), 2) model diagnostic and 3) posterior distributions----------------------
      diag<- s
      invisible(return(diag))
    }

    # Check if argument x is an ANTs object from function met.assortativity----------------------
    if (attr(x, "class") == "ant assortativity single matrix") {
      # Separate correlation from the original data (first value) from the permuted ones----------------------
      obs <- x[, 1][1]
      v_perm <- x[, 1][-1]

      # Compute permuted p-values----------------------
      p <- stat.p(c(obs,v_perm))
      
      # Compute confidence interval--------------------
      stat.ci <- quantile(v_perm, c(0.05, 0.95))
      
      # Compute mean posterior distribution-------------
      m <- mean(v_perm)

      # Create dataframe with permuted p-values, 95% confidence interval and mean posterior distribution----------------------     
      df <- as.data.frame(cbind(obs, p[1], p[2], p[3], stat.ci[1], stat.ci[2], m))
      colnames(df) <- (c("Observed correlation", "p.left", "p.right",  "p.two.sides", "95ci lower", "95ci upper", "mean"))
      rownames(df) <- c("statistics")
      diag<- df

      # Create posterior distribution plots----------------------
      par(bg = "gray63")
      # Is the observed correlation superior to the posterior mean
      if (obs > m) {
        h <- suppressWarnings(hist(v_perm, breaks = length(v_perm), xaxt = "n", plot = FALSE))
        cuts <- cut(h$breaks, c(obs, Inf))
        cuts <- ifelse(is.na(cuts), "gray10", "gray25")
        plot(h, col = cuts, border = cuts, xlab = paste(attributes(x)$comment), main = paste(attributes(x)$comment, "posterior distribution"), xaxt = "n")
        axis(1, pos = -30)
        mtext(1, text = round(obs, digit = 4), at = obs, col = "white", line = -0.2)
        abline(v = obs, col = "white")
        legend("topright", legend = "observed value", text.col = "white", box.lty = 0)

      }
      else {
        h <- suppressWarnings(hist(v_perm, breaks = length(v_perm), xaxt = "n", plot = FALSE))
        cuts <- cut(h$breaks, c(obs, Inf))
        cuts <- ifelse(is.na(cuts), "gray25", "gray10")
        plot(h, col = cuts, border = cuts, xlab = paste(attributes(x)$comment), main = paste(attributes(x)$comment, "posterior distribution"), xaxt = "n")
        axis(1, pos = -10)
        mtext(1, text = round(obs, digit = 4), at = obs, col = "white", line = -0.2)
        abline(v = obs, col = "white")
        legend("topright", legend = "observed value", text.col = "white", box.lty = 0)

      }
      

      # Print data frame & return dataframe and plot----------------------
      if(progress){
        cat("assortativity permuted test", length(v_perm), "perm :", "\n")
        cat("Observed assortativity: ", obs, "\n")
        cat("P-values and effect sizes: \n")
        print(df)
      }
      
      invisible(return(diag))
    }
    # Check if argument x is a dataframe----------------------
    if (is.data.frame(x)) {
      # Separate correlation from the original data (first value) from the permuted ones----------------------
      obs <- x[1, ]
      v_perms <- x[-1, ]

      # Create dataframe with permuted p-values, 95% confidence interval and mean posterior distribution----------------------  
      stat <- NULL
      for (a in 1:ncol(x)) {
        r <- stat.ci(x[-1, a])
        p <- stat.p(x[, a])
        stat[[a]] <- data.frame(
          p[1], p[2], p[3],
          r[1], r[2],
          mean(x[-1, a])
        )
      }
      stat <- do.call("rbind", stat)
      colnames(stat) <- c("p.left","p.rigth", "p.two.sides","lower.ci", "uper.ci", "mean")
      rownames(stat) <- colnames(x)

     # Create posterior distribution plots----------------------
      vis.post.distribution(x, legend = FALSE)

      # Return results 1) permuted statistics and 2) posterior distributions----------------------
      diag <- stat
      invisible(return(diag))
    }
    stop("Argument x is not an object of class 'ant cor', 'ant t-test', 'ant lm', 'ant glm', 'ant glmm' or a data frame.")
  }
  else {
    # Check if argument x is a vector
    if (is.vector(x)) {
      # Separate correlation from the original data (first value) from the permuted ones----------------------
      obs <- x[1]
      v_perm <- x[-1]

      # Create object to return----------------------
      diag <- list()

      # Compute permuted p-values----------------------
      p <- stat.p(c(obs,v_perm))
      
      # Compute confidence interval--------------------
      stat.ci <- quantile(v_perm, c(0.05, 0.95))
      
      # Compute mean posterior distribution-------------
      m <- mean(v_perm)
      
      # Create dataframe with permuted p-values, 95% confidence interval and mean posterior distribution----------------------
      df <- as.data.frame(cbind(obs, p[1], p[2], p[3], stat.ci[1], stat.ci[2], m))
      colnames(df) <- (c("Observed correlation", "p.left", "p.right", "p.two.sides", "95ci lower", "95ci upper", "mean"))
      rownames(df) <- c("statistics")
      diag$statistics <- df

      # Create posterior distribution plots----------------------
      par(bg = "gray63")
      # Is the observed correlation superior to the posterior mean
      if (obs > m) {
        h <- suppressWarnings(hist(v_perm, breaks = length(v_perm), xaxt = "n", plot = FALSE))
        cuts <- cut(h$breaks, c(obs, Inf))
        cuts <- ifelse(is.na(cuts), "gray10", "gray25")
        plot(h, col = cuts, border = cuts, xlab = "statistic value", main = "Statistic value posterior distribution", xaxt = "n")
        axis(1, pos = -30)
        mtext(1, text = round(obs, digit = 3), at = obs, col = "white", line = -0.2)
        abline(v = obs, col = "white")
        legend("topright", legend = "observed value", text.col = "white", box.lty = 0)

      }
      else {
        h <- suppressWarnings(hist(v_perm, breaks = length(v_perm), xaxt = "n", plot = FALSE))
        cuts <- cut(h$breaks, c(obs, Inf))
        cuts <- ifelse(is.na(cuts), "gray25", "gray10")
        plot(h, col = cuts, border = cuts, xlab = "statistic value", main = "Statistic value posterior distribution", xaxt = "n")
        axis(1, pos = -10)
        mtext(1, text = round(obs, digit = 3), at = obs, col = "white", line = -0.2)
        abline(v = obs, col = "white")
        legend("topright", legend = "observed value", text.col = "white", box.lty = 0)

      }
      

      # Print dataframe & return dataframe and plot----------------------
      if(progress){
        cat("Permuted test for", length(v_perm), "permutations :", "\n")
        cat("Observed statistic value: ", obs, "\n")
        cat("P-values and effect sizes: \n")
        print(df)
      }
      
      invisible(return(diag))
    }
    # Argument x doesn't correspond to any object type accepted by this function----------------------
    stop("Argument x is not an object of class 'ant cor', 'ant t-test', 'ant lm', 'ant glm', 'ant glmm', a vector or a data frame.")
  }
})

Try the ANTs package in your browser

Any scripts or data that you put into this service are public.

ANTs documentation built on July 3, 2022, 1:05 a.m.