Nothing
# Copyright (C) 2018 Sebastian Sosa, Ivan Puga-Gonzalez, Hu Feng He, Xiaohua Xie, Cédric Sueur
#
# This file is part of Animal Network Toolkit Software (ANTs).
#
# ANT is a free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# ANT is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#' @title Permuted Generalized Linear Model
#' @description Performs Generalized Linear Models tests and computes permuted p-values
#'
#' @param ant an output of ANT function \code{\link{perm.net.nl}} without any random factor declared, or output of ANT 'met' category functions in which output of ANT functions \code{\link{perm.ds.focal}}, \code{\link{perm.ds.grp}} or \code{\link{perm.net.lk}} where single matrices were used.
#' @param oda the original data frame of associations when argument ant is obtained with \code{\link{perm.ds.focal}} or \code{\link{perm.ds.grp}} ANT functions.
#' @param formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
#' @param family a description of the error distribution and link function to be used in the model. For glm this can be a character string naming a family function, a family function or the result of a call to a family function. For glm.fit only the third option is supported, see \code{\link[stats]{glm}} and \code{\link[stats]{family}}.
#' @param progress a boolean indicating the visualization of the permutation process.
#' @param start starting values for the parameters in the linear predictor.
#' @param control a list of parameters for controlling the fitting process.
#' @param model a logical value indicating whether model frame should be included as a component of the returned value.
#' @param method the method to be used in fitting the model. The default method "glm.fit" uses iteratively reweighted least squares (IWLS): the alternative "model.frame" returns the model frame and does no fitting.
#' @param x,y For glm: logical values indicating whether the response vector and model matrix used in the fitting process should be returned as components of the returned value.
#' @param contrasts an optional list. See the contrasts.arg of model.matrix.default.
#' @param ... Extra arguments for \code{\link[stats]{glm}} function only.
#' @return Returns a list of 3 elements :
#' \itemize{
#' \item An object of class inheriting from "glm" which inherits from the class "lm".
#' \item A data frame if the estimates of the permuted models.
#' \item A vector of integers indicating the permutations that returned model errors or warnings (e.g. model convergence issues) and for which new permutations were done.
#' }
#' @details This function is the first step in the process to create a t-test in permuted data. For more details on t-tests, see R documentation.
#' @author Sebastian Sosa, Ivan Puga-Gonzalez.
#' @references Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman and Hall.
#' @references Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
#' @references McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.
#' @references Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.
#' @examples
#' t=met.degree(sim.m, sym = TRUE,sim.df,1) # Computing network metric
#' t=perm.net.nl(t,labels='age',rf=NULL,nperm=10,progress=FALSE) # Node label permutations
#' r.glm=stat.glm(ant = t,formula = degree ~ age,progress=FALSE) # Permuted GLM
#' @seealso \code{\link[stats]{glm}}
stat.glm <- function(ant, oda, formula, family = "gaussian", progress = TRUE, start = NULL, control = list(...),
model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...) {
# Test on observed data ------------------------------------------------------------------------
odf <- ant[[1]]
# Model on original data
tmp <- tryCatch(glm(
formula = formula, data = odf, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
# Check for errors and warnings.
if (is(tmp, "error")) {
print("The model on your original data contains the following errors.")
stop(tmp$message)
}
if (is(tmp, "warning")) {
warning("The model on your original data contains the following warnings.")
cat(tmp$message)
answer <- readline(prompt = "Do you want to continue (y/n)? ")
while (answer != "y" & answer != "n") {
# play.sound(FALSE)
readline("Model on your orignal data contain warnings.")
answer <- readline(prompt = "Do you want to continue (y/n)? ")
}
if (answer == "n") {
suppressMessages(stop(print(tmp)))
}
}
# Extract GLM informations
else {
obs <- summary(tmp)
obs$resid <- residuals.glm(tmp)
obs$fit <- fitted(tmp)
obs$call <- paste(format(formula), ", family =", family)
obs$coefficients <- obs$coefficients[, -4]
cat("Original model : ", "\n", "\n")
print(obs)
}
at <- attributes(ant)
ant <- ant[-1]
attributes(ant) <- at
# GLM along permutations ------------------------------------------
if (is.null(attributes(ant)$ANT)) {
stop("Argument ant must be an object returned by perm.ds.grp, per.ds.focal or per.ds.nl functions")
}
if (attributes(ant)$ANT == "ANT node link permutation") {
stop("Currently not available")
}
# Check if argument M is an object returned by perm.ds.grp, perm.ds.focal or perm.net.nl----------------------
# For each type of permutations the process is the following:
# 1. Compute model on a single permutation
# 2. Check for warnings or errors
# 3. If error, redo permutation
# 4. Perform steps 1, 2, 3 until there is no more error
test1 <- attributes(ant)$ANT == "ANT node label permutation"
test2 <- attributes(ant)$ANT == "ANT node label permutation keeping structure"
test3 <- attributes(ant)$ANT == "ANT data stream group sampling single matrix"
test4 <- attributes(ant)$ANT == "ANT data stream focal sampling single matrix"
if (any(test1, test2, test3, test4)) {
# If node label permutations
if (test1) {
# Create en environment to store the permutations that return model errors
tmp.env <- new.env()
tmp.env$error <- NULL
# Store label permutation information (random factors and permuted labels)
ctrl <- attributes(ant)$rf
labels <- attributes(ant)$labels
if (progress) {
# GLM on permuted data
results <- lapply(seq_along(ant), function(i, ant, formula, progress = TRUE, ctrl = ctrl, odf, labels, family, start, control, model, method, x, y, contrasts, ...) {
cat(" Processing permutation : ", attributes(ant[[i]])$permutation, "\r")
#GLM
r <- tryCatch(glm(
formula = formula, data = ant[[i]], family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
# If error
if (is(r, "error") | is(r, "warning")) {
# Extract permutation number
tmp.env$error <- c(tmp.env$error, attributes(ant[[i]])$permutation)
# While error or warning
while (is(r, "error") | is(r, "warning")) {
# Permuted labels
newdf <- perm.net.nl(odf, labels, rf = NULL, nperm = 1, progress = FALSE)[[2]]
# Redo GLM
r <- tryCatch(glm(
formula = formula, data = newdf, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
}
}
# Extract coefficients
r <- summary(r)$coefficients[, 1]
return(r)
}, ant = ant, formula = formula, progress = TRUE, odf = odf, labels = labels, family = family, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, ...)
cat("\n")
}
# If argument progress is FALSE, same as previoulsy but without printing statisitical test progress
else {
# GLM on permuted data
results <- lapply(seq_along(ant), function(i, ant, formula, progress = TRUE, ctrl = ctrl, odf, labels, family, start, control, model, method, x, y, contrasts, ...) {
#GLM
r <- tryCatch(glm(
formula = formula, data = ant[[i]], family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
# If error
if (is(r, "error") | is(r, "warning")) {
# Extract permutation number
tmp.env$error <- c(tmp.env$error, attributes(ant[[i]])$permutation)
# While error or warning
while (is(r, "error") | is(r, "warning")) {
# Permuted labels
newdf <- perm.net.nl(odf, labels, rf = NULL, nperm = 1, progress = FALSE)[[2]]
# Redo GLM
r <- tryCatch(glm(
formula = formula, data = newdf, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
}
}
# Extract coefficients
r <- summary(r)$coefficients[, 1]
return(r)
}, ant = ant, formula = formula, progress = TRUE, odf = odf, labels = labels, family = family, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, ...)
cat("\n")
}
}
if (test2) {
# Create en environment to store the permutations that return model errors
tmp.env <- new.env()
tmp.env$error <- NULL
# Store label permutation information (random factors and permuted labels)
ctrl <- attributes(ant)$rf
labels <- attributes(ant)$labels
if (progress) {
# GLM on permuted data
results <- lapply(seq_along(ant), function(i, ant, formula, progress = TRUE, ctrl = ctrl, odf, labels, family, start, control, model, method, x, y, contrasts, ...) {
cat(" Processing permutation : ", attributes(ant[[i]])$permutation, "\r")
#GLM
r <- tryCatch(glm(
formula = formula, data = ant[[i]], family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
# If error
if (is(r, "error") | is(r, "warning")) {
# Extract permutation number
tmp.env$error <- c(tmp.env$error, attributes(ant[[i]])$permutation)
# While error or warning
while (is(r, "error") | is(r, "warning")) {
# Permuted labels
newdf <- perm.net.nl(odf, labels, rf = NULL, nperm = 1, progress = FALSE)[[2]]
# Redo GLM
r <- tryCatch(glm(
formula = formula, data = newdf, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
}
}
# Extract coefficients
r <- summary(r)$coefficients[, 1]
return(r)
}, ant = ant, formula = formula, progress = TRUE, odf = odf, labels = labels, family = family, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, ...)
cat("\n")
}
# If argument progress is FALSE, same as previoulsy but without printing statisitical test progress
else {
# GLM on permuted data
results <- lapply(seq_along(ant), function(i, ant, formula, progress = TRUE, ctrl = ctrl, odf, labels, family, start, control, model, method, x, y, contrasts, ...) {
#GLM
r <- tryCatch(glm(
formula = formula, data = ant[[i]], family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
# If error
if (is(r, "error") | is(r, "warning")) {
# Extract permutation number
tmp.env$error <- c(tmp.env$error, attributes(ant[[i]])$permutation)
# While error or warning
while (is(r, "error") | is(r, "warning")) {
# Permuted labels
newdf <- perm.net.nl(odf, labels, rf = NULL, nperm = 1, progress = FALSE)[[2]]
# Redo GLM
r <- tryCatch(glm(
formula = formula, data = newdf, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
}
}
# Extract coefficients
r <- summary(r)$coefficients[, 1]
return(r)
}, ant = ant, formula = formula, progress = TRUE, odf = odf, labels = labels, family = family, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, ...)
cat("\n")
}
}
# Finding node metrics to recompute in case of warning or error along permuted data if agument ant is of type "ANT data stream group sampling single matrix" or "ANT data stream focal sampling single matrix"------------------------------------------
# Extract metrics inside the formula
arguments <- all.vars(formula)
# All metrics available in ANTs
metrics <- c(
"degree", "outdegree", "indegree", "strength", "outstrength", "instrength", "affinityB", "affinity", "affinityW", "disparity", "indisparity", "outdisparity",
"eigenB", "eigenU", "outeigen", "ineigen", "eigenW", "eigen", "lpB", "lpW", "reach", "riB", "riW", "ri"
)
# Which metric in formula are present in ANTs list
target.metrics <- metrics[metrics %in% arguments]
# Removing node metrics from original data frame
odf <- odf[, -c(df.col.findId(odf, target.metrics))]
# ANT data stream group and focal sampling ------------------------------------------
if (test3) {
cat("in", "\n")
# Finding scan, control factor and method to redo data stream permutation
Scan <- attributes(ant)$scan
ctrlf <- attributes(ant)$ctrlf
index <- attributes(ant)$method
# New environment to store the new gbi, errors and original data
tmp.env <- new.env()
tmp.env$new.perm <- 0
tmp.env$new.oda <- NULL
tmp.env$error <- NULL
if (progress) {
# GLM on permuted data
results <- lapply(ant, function(d, index, formula, family, start, control, model, method, x, y, contrasts, odf, oda, target.metrics, Scan, ctrlf, ..) {
cat(" Processing file: ", attributes(d)$permutation, "\r")
attr(oda, "permutation") <- 0
#GLM
r <- tryCatch(glm(
formula = formula, data = d, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
# If error
if (is(r, "error") | is(r, "warning")) {
attr(odf, "permutation") <- attributes(d)$permutation
# redo data stream permutations with gambit of the group protocol and recompute network metrics
r <- redo.ds.grp.glm(
new.perm = tmp.env$new.perm, gbi = tmp.env$gbi, oda = oda, odf = odf, target.metrics = target.metrics, Scan = Scan, ctrlf = ctrlf, index = index, formula = formula, data = d, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
)
# Store information for future repermutations
tmp.env$new.perm <- r[[1]]
tmp.env$error <- c(tmp.env$error, r[[1]])
tmp.env$gbi <- r[[2]]
return(r[[3]])
}
# Extract coefficients
r <- summary(r)$coefficients[, 1]
return(r)
}, index, formula = formula, family = family, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, odf = odf, oda = oda, target.metrics = target.metrics, Scan = Scan, ctrlf = ctrlf, ...)
cat("\n")
}
# If argument progress is FALSE, same as previoulsy but without printing statistical test progress
else {
# GLM on permuted data
results <- lapply(ant, function(d, index, formula, family, start, control, model, method, x, y, contrasts, odf, oda, target.metrics, Scan, ctrlf, ..) {
attr(oda, "permutation") <- 0
#GLM
r <- tryCatch(glm(
formula = formula, data = d, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
), error = identity)
# If error
if (is(r, "error") | is(r, "warning")) {
attr(odf, "permutation") <- attributes(d)$permutation
# redo data stream permutations with gambit of the group protocol
r <- redo.ds.grp.glm(
new.perm = tmp.env$new.perm, gbi = tmp.env$gbi, oda = oda, odf = odf, target.metrics = target.metrics, Scan = Scan, ctrlf = ctrlf, index = index, formula = formula, data = d, family = family, start = start, control = control,
model = model, method = method, x = x, y = y, contrasts = contrasts, ...
)
# Store information for future repermutations
tmp.env$new.perm <- r[[1]]
tmp.env$error <- c(tmp.env$error, r[[1]])
tmp.env$gbi <- r[[2]]
return(r[[3]])
}
r <- summary(r)$coefficients[, 1]
return(r)
}, index, formula = formula, family = family, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, odf = odf, oda = oda, target.metrics = target.metrics, Scan = Scan, ctrlf = ctrlf, ...)
}
}
if (test4) {
# Finding focals, control factors, alters and method to redo data stream permutation
focal <- attributes(ant)$focal
ctrl <- attributes(ant)$ctrl
alters <- attributes(ant)$alters
index <- attributes(ant)$method
# New environment to store the new gbi, errors and original data
tmp.env <- new.env()
tmp.env$new.perm <- 0
tmp.env$gbi <- NULL
tmp.env$gbi2 <- NULL
tmp.env$error <- NULL
if (progress) {
# GLM on permuted data
results <- lapply(ant, function(d, formula, family, start, control, model, method, x, y, contrasts, odf, oda, target.metrics, focal, ctrl, alters, index, ...) {
cat(" Processing file: ", attr(d, "permutation"), "\r")
attr(oda, "permutation") <- 0
# GLM
r <- tryCatch(glm(formula = formula, family = family, data = d, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, ...), error = identity)
# If error
if (is(r, "error") | is(r, "warning")) {
# redo a permutations on raw data
# Giving to the original data frame of individual characteristics (odf) the permutation number where error or warning were found
attr(odf, "permutation") <- attributes(d)$permutation
# redo.ds.grp.first return 3 elements: 1) permutation index, 2) permuted data frame of associations 3) LM estimates
r <- redo.ds.focal.glm(family = family, formula = formula, new.perm = tmp.env$new.perm, gbi = tmp.env$gbi, gbi2 = tmp.env$gbi2, oda = oda, odf = odf, target.metrics = target.metrics, focal = focal, ctrl = ctrl, alters = alters, index = index, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, ...)
tmp.env$new.perm <- r[[1]]
tmp.env$error <- c(tmp.env$error, r[[1]])
tmp.env$gbi <- r[[2]]
tmp.env$gbi2 <- r[[3]]
result <- r[[4]]
return(result)
}
# Extract coefficients
r <- summary(r)$coefficients[, 1]
return(r)
}, formula = formula, family = family, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, odf = odf, oda = oda, target.metrics = target.metrics, focal = focal, ctrl = ctrl, alters = alters, index = index, ...)
cat("\n")
}
# If argument progress is FALSE, same as previoulsy but without printing statistical test progress
else {
# GLM on permuted data
results <- lapply(ant, function(d, formula, family, start, control, model, method, x, y, contrasts, odf, oda, target.metrics, focal, ctrl, alters, index, ...) {
attr(oda, "permutation") <- 0
# GLM
r <- tryCatch(glm(formula = formula, family = family, data = d, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, ...), error = identity)
# If error
if (is(r, "error") | is(r, "warning")) {
# redo a permutations on raw data
# Giving to the original data frame of individuals characteristics (odf) the permutation number where error or warning were found
attr(odf, "permutation") <- attributes(d)$permutation
# redo.ds.grp.first return 3 elements: 1) permutation index, 2) permuted data frame of associations 3) LM estimates
r <- redo.ds.focal.glm(family = family, formula = formula, new.perm = tmp.env$new.perm, gbi = tmp.env$gbi, gbi2 = tmp.env$gbi2, oda = oda, odf = odf, target.metrics = target.metrics, focal = focal, ctrl = ctrl, alters = alters, index = index, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, ...)
tmp.env$new.perm <- r[[1]]
tmp.env$error <- c(tmp.env$error, r[[1]])
tmp.env$gbi <- r[[2]]
tmp.env$gbi2 <- r[[3]]
result <- r[[4]]
return(result)
}
# Extract coefficients
r <- summary(r)$coefficients[, 1]
return(r)
}, formula = formula, family = family, start = start, control = control, model = model, method = method, x = x, y = y, contrasts = contrasts, odf = odf, oda = oda, target.metrics = target.metrics, focal = focal, ctrl = ctrl, alters = alters, index = index, ...)
cat("\n")
}
}
}
else {
stop("Argument ant must be an object returned by perm.ds.grp, per.ds.focal or per.ds.nl functions of type 'single matrix'.")
}
# Merge list of coefficients
results <- do.call("rbind", results)
# Create an object with the original model, the permuted coefficients, the permutation numbers that require repermutations
result <- list("Original.model" = obs, "permutations" = as.data.frame(results), "errors" = tmp.env$error)
attr(result, "class") <- "ant glm"
attr(result, "formula") <- paste(format(formula))
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.