Nothing
#' @title Step1 Down Model
#'
#' @description Fit the one-step Šesták–Berggren kinetic model.
#'
#' @details Fit the one-step Šesták–Berggren kinetic (non-linear) model using
#' accelerated stability data from an R dataframe format. Parameters are kept in even when not significant.
#'
#' @param data Dataframe containing accelerated stability data (required).
#' @param y Name of decreasing variable (e.g. concentration) contained within data
#' (required).
#' @param .time Time variable contained within data (required).
#' @param K Kelvin variable (numeric or column name) (optional).
#' @param C Celsius variable (numeric or column name) (optional).
#' @param validation Validation dummy variable, the column must contain only 1s and 0s, 1 for validation data and 0 for fit data. (column name) (optional).
#' @param draw Number of simulations used to estimate confidence intervals. When set to NULL the calculus method is used, however this is not recommended.
#' @param parms Starting values for the parameters as a list - k1, k2, k3, and c0.
#' @param temp_pred_C Integer or numeric value to predict the response for a
#' given temperature (in Celsius).
#' @param max_time_pred Maximum time to predict the response variable.
#' @param confidence_interval Confidence level for the confidence and prediction intervals
#' around the predictions (default 0.95).
#' @param by Number of points (on the time scale) to smooth the statistical
#' intervals around the predictions.
#' @param reparameterisation Use alternative parameterisation of the one-step
#' model which aims to reduce correlation between k1 and k2.
#' @param zero_order Set kinetic order, k3, to zero (straight lines).
#'
#' @return An SB class object, a list including the following elements:
#' \itemize{
#' \item *fit* - The non-linear fit.
#' \item *data* - The data set.
#' \item *prediction* - A data frame containing the predictions with the confidence and prediction intervals.
#' \item *user_parameters* - List of users input parameters which is utilised by other
#' functions in the package.
#' \item *sample_coefficients* - A matrix containing the coefficients sampled during bootstrapping.
#' }
#'
#' @examples #load antigenicity and potency data.
#' data(antigenicity)
#' data(potency)
#'
#' #Basic use of the step1_down function with C column defined.
#' fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time", C = "Celsius", draw = 5000)
#'
#' #Basic use of the step1_down function with K column defined & Validation data segmented out.
#' fit2 <- step1_down(data = antigenicity, y = "conc", .time = "time", K = "K",
#' validation = "validA", draw = 5000)
#'
#' #When zero_order = FALSE, the output suggests using zero_order = TRUE for Potency dataset.
#' fit3 <- step1_down(data = potency, y = "Potency", .time = "Time",C = "Celsius",
#' reparameterisation = FALSE, zero_order = TRUE, draw = 5000)
#'
#' #reparameterisation is TRUE.
#' fit4 <- step1_down(data = antigenicity, y = "conc", .time = "time",C = "Celsius",
#' reparameterisation = TRUE, draw = 5000)
#'
#' @importFrom stats vcov coef runif confint rnorm quantile qt complete.cases
#' @importFrom minpack.lm nls.lm
#' @importFrom mvtnorm rmvt
#'
#' @export step1_down
step1_down <- function (data, y, .time, K = NULL, C = NULL, validation = NULL,
draw = 10000, parms = NULL, temp_pred_C = NULL,
max_time_pred = NULL, confidence_interval = 0.95, by = 101,
reparameterisation = FALSE, zero_order = FALSE){
if (is.null(K) & is.null(C))
stop("Select the temperature variable in Kelvin or Celsius")
if (!is.null(parms) & !is.list(parms))
stop("The starting values for parameters must be a list, or keep as NULL")
user_parameters <- list(
data = data, y = y, .time = .time, K = K, C = C, validation = validation,draw = draw,
parms = parms, temp_pred_C = temp_pred_C, max_time_pred = max_time_pred,
confidence_interval = confidence_interval, by = by,
reparameterisation = reparameterisation, zero_order = zero_order
)
if(!is.null(C) & !is.null(K)) {
data[, C] <- ifelse(is.na(data[, C]) & !is.na(data[, K]),
data$K - 273.15,
data[, C])
data[, K] <- ifelse(is.na(data[, K]) & !is.na(data[, C]),
data$C + 273.15,
data[, K])
}
data <- data[complete.cases(data[, c(C,K,y,.time)]), ]
dat = data
if (!is.null(validation))
if (!all(dat[,validation] %in% c(0,1)))
stop("Validation column must contain 1s and 0s only")
if (is.null(K))
dat$K = dat[, C] + 273.15
if (is.null(C)) {
dat$C = dat[, K] - 273.15
C = "C"}
Kref = mean(dat$K)
dat$Celsius = as.factor(dat[, C])
dat$time = dat[, .time]
dat$y = dat[, y]
if(!is.null(validation)){
dat$validation = ifelse(dat[,validation] == 0, "Fit", "Validation")
if(validation != "validation"){
dat <- dat[, !names(dat) %in% c(validation)]
}
}
if(.time != "time"){
dat <- dat[, !names(dat) %in% c(.time)]
}
if(y != "y"){
dat <- dat[, !names(dat) %in% c(y)]
}
Temps = sort(unique(dat$K))
if (!is.null(temp_pred_C))
Temps = unique(sort(c(Temps, temp_pred_C + 273.15)))
if (is.null(max_time_pred))
max_time_pred = max(dat$time, na.rm = TRUE)
times.pred = seq(0, max_time_pred, length.out = by)
dat_full <- dat
if(!is.null(validation)){
dat <- dat[dat$validation == "Fit",]
}
if(is.null(parms)){
sorted_data <- dat[order(dat$time), ]
min_time <- min(sorted_data$time)
if (sum(sorted_data$time == min_time) > 3) {
selected_rows <- sorted_data$time == min_time
} else {
selected_rows <- seq_len(min(3, nrow(sorted_data)))
}
c0_initial <- mean(sorted_data$y[selected_rows])
}
if(reparameterisation & zero_order){ # reparameterisation and k3 is 0
MyFctNL = function(parms) { # Make function
k1 = parms$k1
k2 = parms$k2
c0 = parms$c0
Model = c0 - c0 * dat$time * exp(k1 - k2/dat$K +
k2/Kref)
residual = dat$y - Model
return(residual)
}
# Fit model :
if (!is.null(parms)) {
fit = minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0,
length(parms)))
}
else {
repeat {
suppressWarnings(rm(fit))
parms = list(k1 = stats::runif(1, 0, 40), k2 = stats::runif(1,
1000, 20000), c0 = c0_initial)
fit = suppressWarnings(minpack.lm::nls.lm(par = parms,
fn = MyFctNL, lower = rep(0, length(parms))))
fit <- tryCatch({
suppressWarnings(minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0, length(parms))))
},
error = function(e){"error"},
warning = function(w){"warning"})
vcov_test <- tryCatch({
stats::vcov(fit)
},
error = function(e){"error"},
warning = function(w){"warning"})
if(all(!(fit %in% c("error","warning"))) && all(!(vcov_test %in% c("error","warning", NaN)))){
break
}
}
fit = minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0,
length(parms)))
}
# Calculate the predictions
k1 = stats::coef(fit)[1]
k2 = stats::coef(fit)[2]
c0 = stats::coef(fit)[3]
SIG = stats::vcov(fit)
sigma = summary(fit)$sigma
DF = summary(fit)$df[2]
pred = expand.grid(time = times.pred, K = Temps)
pred$Degradation = pred$time * exp(k1 - k2/pred$K + k2/Kref)
pred$Response = c0 - c0 * pred$Degradation
if(is.null(draw)){
pred$derivk1 = -c0 * pred$Degradation
pred$derivk2 = -c0 * (1/Kref - 1/pred$K) * pred$Degradation
pred$derivc0 = 1 - pred$Degradation
pred$varY = (pred$derivk1)^2 * SIG[1, 1] + (pred$derivk2)^2 *
SIG[2, 2] + (pred$derivc0)^2 * SIG[3, 3] + 2 * pred$derivk1 *
pred$derivk2 * SIG[1, 2] + 2 * pred$derivk1 * pred$derivc0 *
SIG[1, 3] + 2 * pred$derivk2 * pred$derivc0 * SIG[2,
3]
pred$derivk1 = pred$derivk2 = pred$derivc0 = NULL}else{ # Bootstrap
pred_fct = function(coef.fit)
{
degrad = pred$time * exp(coef.fit[1] - coef.fit[2] / pred$K + coef.fit[2] / Kref)
conc = coef.fit[3] - coef.fit[3]*degrad
return(conc)
}
# Multi T bootstrap
rand.coef = rmvt(draw, sigma = SIG, df = nrow(dat) - 3) + matrix(nrow = draw, ncol = 3, byrow = TRUE, coef(fit))
res.boot = matrix(nrow = draw, ncol = nrow(pred), byrow = TRUE, apply(rand.coef, 1, pred_fct))
CI1b = apply(res.boot, 2, quantile, ((1-confidence_interval)/2), na.rm = TRUE)
CI2b = apply(res.boot, 2, quantile, ((1+confidence_interval)/2), na.rm = TRUE)
res.boot = res.boot + rnorm(draw*length(pred$time), 0, sigma)
PI1b = apply(res.boot, 2, quantile, ((1-confidence_interval)/2), na.rm = TRUE)
PI2b = apply(res.boot, 2, quantile, ((1+confidence_interval)/2), na.rm = TRUE)
}
}else if(!reparameterisation & zero_order){ # no reparameterisation and k3 is 0
MyFctNL = function(parms) { # make function
k1 = parms$k1
k2 = parms$k2
c0 = parms$c0
Model = c0 - c0 * dat$time * exp(k1 - k2 / dat$K)
residual = dat$y - Model
return(residual)
}
if (!is.null(parms)) { # fit model
fit = minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0,
length(parms)))
}
else {
repeat {
suppressWarnings(rm(fit))
parms = list(k1 = stats::runif(1, 0, 40), k2 = stats::runif(1,
1000, 20000), c0 = c0_initial)
fit <- tryCatch({
suppressWarnings(minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0, length(parms))))
},
error = function(e){"error"},
warning = function(w){"warning"})
vcov_test <- tryCatch({
stats::vcov(fit)
},
error = function(e){"error"},
warning = function(w){"warning"})
if(all(!(fit %in% c("error","warning"))) && all(!(vcov_test %in% c("error","warning", NaN)))){
break
}
}
fit = minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0,
length(parms)))
}
# Predict
k1 = coef(fit)[1]
k2 = coef(fit)[2]
c0 = coef(fit)[3]
SIG = vcov(fit)
sigma = summary(fit)$sigma
DF = summary(fit)$df[2]
pred = expand.grid("time" = times.pred, K = Temps)
pred$Degradation = pred$time * exp(k1 - k2 / pred$K)
pred$Response = c0 - c0*pred$Degradation
if(is.null(draw)){
pred$derivk1 = -c0 * pred$Degradation
pred$derivk2 = c0 / pred$K * pred$Degradation
pred$derivc0 = 1 - pred$Degradation
pred$varY = (pred$derivk1)^2 * SIG[1,1] + (pred$derivk2)^2 * SIG[2,2] + (pred$derivc0)^2 * SIG[3,3] +
2*pred$derivk1*pred$derivk2 * SIG[1,2] + 2*pred$derivk1*pred$derivc0 * SIG[1,3] + 2*pred$derivk2*pred$derivc0 * SIG[2,3]
pred$derivk1 = pred$derivk2 = pred$derivc0 = NULL}else{ # Bootstrap
pred_fct = function(coef.fit)
{
degrad = pred$time * exp(coef.fit[1] - coef.fit[2] / pred$K)
conc = coef.fit[3] - coef.fit[3]*degrad
return(conc)
}
# Multi T bootstrap
rand.coef = rmvt(draw, sigma = SIG, df = nrow(dat) - 3) + matrix(nrow = draw, ncol = 3, byrow = TRUE, coef(fit))
res.boot = matrix(nrow = draw, ncol = nrow(pred), byrow = TRUE, apply(rand.coef, 1, pred_fct))
CI1b = apply(res.boot, 2, quantile, ((1-confidence_interval)/2), na.rm = TRUE)
CI2b = apply(res.boot, 2, quantile, ((1+confidence_interval)/2), na.rm = TRUE)
res.boot = res.boot + rnorm(draw*length(pred$time), 0, sigma)
PI1b = apply(res.boot, 2, quantile, ((1-confidence_interval)/2), na.rm = TRUE)
PI2b = apply(res.boot, 2, quantile, ((1+confidence_interval)/2), na.rm = TRUE)
}
}else if(reparameterisation & !zero_order){ #reparameterisation and k3 is not zero
MyFctNL = function(parms) {
k1 = parms$k1
k2 = parms$k2
k3 = parms$k3
c0 = parms$c0
Model = c0 - c0 * (1 - ((1 - k3) * (1/(1 - k3) - dat$time *
exp(k1 - k2/dat$K + k2/Kref)))^(1/(1 - k3)))
residual = dat$y - Model
return(residual)
}
if (!is.null(parms)) { # Fit the model
fit = minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0,
length(parms)))
}
else {
repeat {
suppressWarnings(rm(fit))
parms = list(k1 = stats::runif(1, 0, 60), k2 = stats::runif(1,
1000, 20000), k3 = stats::runif(1, 0, 11), c0 = c0_initial)
fit <- tryCatch({
suppressWarnings(minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0, length(parms))))
},
error = function(e){"error"},
warning = function(w){"warning"})
vcov_test <- tryCatch({
stats::vcov(fit)
},
error = function(e){"error"},
warning = function(w){"warning"})
if(all(!(fit %in% c("error","warning"))) && all(!(vcov_test %in% c("error","warning", NaN)))){
break
}
}
fit = minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0,
length(parms)))
}
# Predict
k1 = coef(fit)[1]
k2 = coef(fit)[2]
k3 = coef(fit)[3]
if (k3 == 0){cat(paste("k3 is fitted to be exactly 0, we strongly suggest using option zero_order = TRUE","The model will continue with k3 = 0, so degradation is linear over time"," "," ", sep = "\n"))
}else if(confint(fit,'k3')[1] < 0 && confint(fit,'k3')[2] > 0){print(paste0("The 95% Wald Confidence Interval for k3 includes 0, k3 is estimated as ",signif(k3,4),". We suggest considering option zero_order = TRUE"))}
c0 = coef(fit)[4]
SIG = vcov(fit)
sigma = summary(fit)$sigma
DF = summary(fit)$df[2]
pred = expand.grid("time" = times.pred, K = Temps)
pred$Degradation = 1 - ((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2 / pred$K + k2 / Kref)))^(1/(1-k3))
pred$Response = c0 - c0*pred$Degradation
if(is.null(draw)){
pred$derivk1 = c0 * pred$time * (-exp(k1 - k2/pred$K + k2/Kref)) * ((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K + k2/Kref)))^(1/(1 - k3) - 1)
pred$derivk2 = c0 * pred$time * (1/Kref - 1/pred$K) * (-exp(k1 - k2/pred$K + k2/Kref)) * ((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K + k2/Kref)))^(1/(1 - k3) - 1)
pred$derivk3 = c0 * ((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K + k2/Kref)))^(1/(1 - k3)) * ((pred$time * exp(k1 - k2/pred$K + k2/Kref)) / ((1 - k3)^2 * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K + k2/Kref))) + log((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K + k2/Kref)))/(1 - k3)^2)
pred$derivc0 = 1 - pred$Degradation
pred$varY = (pred$derivk1)^2 * SIG[1,1] + (pred$derivk2)^2 * SIG[2,2] + (pred$derivk3)^2 * SIG[3,3] + (pred$derivc0)^2 * SIG[4,4] +
2*pred$derivk1*pred$derivk2 * SIG[1,2] + 2*pred$derivk1*pred$derivk3 * SIG[1,3] + 2*pred$derivk1*pred$derivc0 * SIG[1,4] +
2*pred$derivk2*pred$derivk3 * SIG[2,3] + 2*pred$derivk2*pred$derivc0 * SIG[2,4] + 2*pred$derivk3*pred$derivc0 * SIG[3,4]
pred$derivk1 = pred$derivk2 = pred$derivk3 = pred$derivc0 = NULL}else{ # Bootstrap
pred_fct = function(coef.fit)
{
degrad = 1 - ((1 - coef.fit[3]) * (1/(1 - coef.fit[3]) - pred$time * exp(coef.fit[1] - coef.fit[2] / pred$K + coef.fit[2] / Kref)))^(1/(1-coef.fit[3]))
conc = coef.fit[4] - coef.fit[4]*degrad
return(conc)
}
# Multi T bootstrap
rand.coef = rmvt(draw, sigma = SIG, df = nrow(dat) - 4) + matrix(nrow = draw, ncol = 4, byrow = TRUE, coef(fit))
res.boot = matrix(nrow = draw, ncol = nrow(pred), byrow = TRUE, apply(rand.coef, 1, pred_fct))
no_k3_below0 <- sum(rand.coef[,3] < 0)
if(no_k3_below0 > 0.5){
cat(paste(paste0(no_k3_below0*100/draw, "% of the bootstraps for k3 are below zero, this might have an adverse effect on the confidence interval, particularly if this value exceeds the confidence %."),"We suggest considering option zero_order = TRUE", sep = "\n"))
}
CI1b = apply(res.boot, 2, quantile, ((1-confidence_interval)/2), na.rm = TRUE)
CI2b = apply(res.boot, 2, quantile, ((1+confidence_interval)/2), na.rm = TRUE)
res.boot = res.boot + rnorm(draw*length(pred$time), 0, sigma)
PI1b = apply(res.boot, 2, quantile, ((1-confidence_interval)/2), na.rm = TRUE)
PI2b = apply(res.boot, 2, quantile, ((1+confidence_interval)/2), na.rm = TRUE)
}
}else if(!reparameterisation & !zero_order){ # No re-parameterisation and k3 not zero
MyFctNL = function(parms) {
k1 = parms$k1
k2 = parms$k2
k3 = parms$k3
c0 = parms$c0
test = c0 - c0 * (1 - ((1 - k3) * (1/(1 - k3) - dat$time * exp(k1 - k2 / dat$K)))^(1/(1-k3)))
residual = dat$y - test
return(residual)
}
if (!is.null(parms)) { # Fitting the model
fit = minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0,
length(parms)))
}
else {
repeat {
suppressWarnings(rm(fit))
parms = list(k1 = stats::runif(1, 0, 60), k2 = stats::runif(1,
1000, 20000), k3 = stats::runif(1, 0, 11), c0 = c0_initial)
fit <- tryCatch({
suppressWarnings(minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0, length(parms))))
},
error = function(e){"error"},
warning = function(w){"warning"})
vcov_test <- tryCatch({
stats::vcov(fit)
},
error = function(e){"error"},
warning = function(w){"warning"})
if(all(!(fit %in% c("error","warning"))) && all(!(vcov_test %in% c("error","warning", NaN)))){
break
}
}
fit = minpack.lm::nls.lm(par = parms, fn = MyFctNL, lower = rep(0,
length(parms)))
}
# Predict
k1 = coef(fit)[1]
k2 = coef(fit)[2]
k3 = coef(fit)[3]
if (k3 == 0){cat(paste("k3 is fitted to be exactly 0, we strongly suggest using option zero_order = TRUE","The model will continue with k3 = 0, so degradation is linear over time"," ", " ", sep = "\n"))
}else if(confint(fit,'k3')[1] < 0 && confint(fit,'k3')[2] > 0){print(paste0("The 95% Wald Confidence Interval for k3 includes 0, k3 is estimated as ",signif(k3,4),". We suggest considering option zero_order = TRUE"))}
c0 = coef(fit)[4]
SIG = vcov(fit)
sigma = summary(fit)$sigma
DF = summary(fit)$df[2]
pred = expand.grid("time" = times.pred, K = Temps)
pred$Degradation = 1 - ((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2 / pred$K)))^(1/(1-k3))
pred$Response = c0 - c0*pred$Degradation
if(is.null(draw)){ # Derivatives
pred$derivk1 = c0 * pred$time * (-exp(k1 - k2/pred$K)) * ((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K)))^(1/(1 - k3) - 1)
pred$derivk2 = (c0 * pred$time * exp(k1 - k2/pred$K) * ((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K)))^(1/(1 - k3) - 1)) / pred$K
pred$derivk3 = c0 * ((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K)))^(1/(1 - k3)) * ((pred$time * exp(k1 - k2/pred$K)) / ((1 - k3)^2 * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K))) + log((1 - k3) * (1/(1 - k3) - pred$time * exp(k1 - k2/pred$K)))/(1 - k3)^2)
pred$derivc0 = 1 - pred$Degradation
pred$varY = (pred$derivk1)^2 * SIG[1,1] + (pred$derivk2)^2 * SIG[2,2] + (pred$derivk3)^2 * SIG[3,3] + (pred$derivc0)^2 * SIG[4,4] +
2*pred$derivk1*pred$derivk2 * SIG[1,2] + 2*pred$derivk1*pred$derivk3 * SIG[1,3] + 2*pred$derivk1*pred$derivc0 * SIG[1,4] +
2*pred$derivk2*pred$derivk3 * SIG[2,3] + 2*pred$derivk2*pred$derivc0 * SIG[2,4] + 2*pred$derivk3*pred$derivc0 * SIG[3,4]
pred$derivk1 = pred$derivk2 = pred$derivk3 = pred$derivc0 = NULL }else{ # Bootstrap
pred_fct = function(coef.fit)
{
degrad = 1 - ((1 - coef.fit[3]) * (1/(1 - coef.fit[3]) - pred$time * exp(coef.fit[1] - coef.fit[2] / pred$K)))^(1/(1-coef.fit[3]))
conc = coef.fit[4] - coef.fit[4]*degrad
return(conc)
}
# Multi T bootstrap
rand.coef = rmvt(draw, sigma = SIG, df = nrow(dat) - 4) + matrix(nrow = draw, ncol = 4, byrow = TRUE, coef(fit))
res.boot = matrix(nrow = draw, ncol = nrow(pred), byrow = TRUE, apply(rand.coef, 1, pred_fct))
no_k3_below0 <- sum(rand.coef[,3] < 0)
if(no_k3_below0 > 0.5){
cat(paste(paste0(no_k3_below0*100/draw, "% of the bootstraps for k3 are below zero, this might have an adverse effect on the confidence interval, particularly if this value exceeds the confidence %."),"We suggest considering option zero_order = TRUE", sep = "\n"))
}
CI1b = apply(res.boot, 2, quantile, ((1-confidence_interval)/2), na.rm = TRUE)
CI2b = apply(res.boot, 2, quantile, ((1+confidence_interval)/2), na.rm = TRUE)
res.boot = res.boot + rnorm(draw*length(pred$time), 0, sigma)
PI1b = apply(res.boot, 2, quantile, ((1-confidence_interval)/2), na.rm = TRUE)
PI2b = apply(res.boot, 2, quantile, ((1+confidence_interval)/2), na.rm = TRUE)
}
}
pred$Celsius = as.factor(pred$K - 273.15)
pred$K = as.factor(pred$K)
pred$fit = "Prediction"
pred$CI = paste(100*confidence_interval, "% CI")
pred$PI = paste(100*confidence_interval, "% PI")
if(is.null(draw)){
pred$CI1 = pred$Response - qt(0.5 + confidence_interval/2, summary(fit)$df[2]) * sqrt(pred$varY)
pred$CI2 = pred$Response + qt(0.5 + confidence_interval/2, summary(fit)$df[2]) * sqrt(pred$varY)
pred$PI1 = pred$Response - qt(0.5 + confidence_interval/2, summary(fit)$df[2]) * sqrt(pred$varY + sigma^2)
pred$PI2 = pred$Response + qt(0.5 + confidence_interval/2, summary(fit)$df[2]) * sqrt(pred$varY + sigma^2)
}else{
pred$CI1 = CI1b
pred$CI2 = CI2b
pred$PI1 = PI1b
pred$PI2 = PI2b}
if(is.null(draw)){
rand.coef = "Calculus method used"
}else{
if(zero_order){
colnames(rand.coef) <- c("k1","k2","c0")
}else{
colnames(rand.coef) <- c("k1","k2","k3","c0")
}
}
results = list(fit, dat_full, pred,user_parameters, rand.coef)
names(results) = c("fit", "data", "prediction","user_parameters","sample_coefficients")
class(results) = "SB"
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.