R/FAT2DBCad_function.R

Defines functions FAT2DBC.ad

Documented in FAT2DBC.ad

#' Analysis: DBC experiment in double factorial design with an additional treatment
#' @description Analysis of an experiment conducted in a randomized block design in a double factorial scheme using analysis of variance of fixed effects.
#' @author Gabriel Danilo Shimizu, \email{shimizu@uel.br}
#' @author Leandro Simoes Azeredo Goncalves
#' @author Rodrigo Yudi Palhaci Marubayashi
#' @param f1 Numeric or complex vector with factor 1 levels
#' @param f2 Numeric or complex vector with factor 2 levels
#' @param block Numeric or complex vector with repetitions
#' @param response Numerical vector containing the response of the experiment.
#' @param responseAd Numerical vector with additional treatment responses
#' @param norm Error normality test (\emph{default} is Shapiro-Wilk)
#' @param homog Homogeneity test of variances (\emph{default} is Bartlett)
#' @param mcomp Multiple comparison test (Tukey (\emph{default}), LSD and Duncan)
#' @param quali Defines whether the factor is quantitative or qualitative (\emph{qualitative})
#' @param names.fat Name of factors
#' @param alpha.f Level of significance of the F test (\emph{default} is 0.05)
#' @param alpha.t Significance level of the multiple comparison test (\emph{default} is 0.05)
#' @param grau Polynomial degree in case of quantitative factor (\emph{default} is 1). Provide a vector with two elements.
#' @param grau12 Polynomial degree in case of quantitative factor (\emph{default} is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
#' @param grau21 Polynomial degree in case of quantitative factor (\emph{default} is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
#' @param transf Applies data transformation (default is 1; for log consider 0; `angular` for angular transformation)
#' @param constant Add a constant for transformation (enter value)
#' @param geom Graph type (columns or segments (For simple effect only))
#' @param theme ggplot2 theme (\emph{default} is theme_classic())
#' @param ylab Variable response name (Accepts the \emph{expression}() function)
#' @param xlab Treatments name (Accepts the \emph{expression}() function)
#' @param xlab.factor Provide a vector with two observations referring to the x-axis name of factors 1 and 2, respectively, when there is an isolated effect of the factors. This argument uses `parse`.
#' @param legend Legend title name
#' @param ad.label Aditional label
#' @param fill Defines chart color (to generate different colors for different treatments, define fill = "trat")
#' @param angle x-axis scale text rotation
#' @param textsize Font size
#' @param labelsize Label Size
#' @param dec Number of cells
#' @param width.column Width column if geom="bar"
#' @param width.bar Width errorbar
#' @param family Font family
#' @param addmean Plot the average value on the graph (\emph{default} is TRUE)
#' @param errorbar Plot the standard deviation bar on the graph (In the case of a segment and column graph) - \emph{default} is TRUE
#' @param CV Plotting the coefficient of variation and p-value of Anova (\emph{default} is TRUE)
#' @param sup Number of units above the standard deviation or average bar on the graph
#' @param color Column chart color (\emph{default} is "rainbow")
#' @param posi legend position
#' @param ylim y-axis scale
#' @param point This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (\emph{default} - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, `mean_sd` and `mean_se` change which information will be displayed in the error bar.
#' @param angle.label label angle
#' @note The order of the chart follows the alphabetical pattern. Please use `scale_x_discrete` from package ggplot2, `limits` argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.
#' @note The function does not perform multiple regression in the case of two quantitative factors.
#' @note The assumptions of variance analysis disregard additional treatment
#' @note In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.
#' @return The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.
#' @keywords DBC
#' @keywords Factorial
#' @keywords Aditional
#' @seealso \link{FAT2DBC}
#' @seealso \link{dunnett}
#' @references
#'
#' Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997
#'
#' Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.
#'
#' Practical Nonparametrics Statistics. W.J. Conover, 1999
#'
#' Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.
#'
#' Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.
#'
#' Mendiburu, F., and de Mendiburu, M. F. (2019). Package ‘agricolae’. R Package, Version, 1-2.
#'
#' @export
#' @examples
#' library(AgroR)
#' data(cloro)
#' respAd=c(268, 322, 275, 350, 320)
#' with(cloro, FAT2DBC.ad(f1, f2, bloco, resp, respAd, ylab="Number of nodules", legend = "Stages"))

FAT2DBC.ad=function(f1,
                    f2,
                    block,
                    response,
                    responseAd,
                    norm="sw",
                    homog="bt",
                    alpha.f=0.05,
                    alpha.t=0.05,
                    quali=c(TRUE,TRUE),
                    names.fat=c("F1","F2"),
                    mcomp="tukey",
                    grau=c(NA,NA),
                    grau12=NA, # F1/F2
                    grau21=NA, # F2/F1
                    transf=1,
                    constant=0,
                    geom="bar",
                    theme=theme_classic(),
                    ylab="Response",
                    xlab="",
                    xlab.factor=c("F1","F2"),
                    legend="Legend",
                    ad.label="Additional",
                    color="rainbow",
                    fill="lightblue",
                    textsize=12,
                    labelsize=4,
                    addmean=TRUE,
                    errorbar=TRUE,
                    CV=TRUE,
                    dec=3,
                    width.column=0.9,
                    width.bar=0.3,
                    angle=0,
                    posi="right",
                    family="sans",
                    point="mean_sd",
                    sup=NA,
                    ylim=NA,
                    angle.label=0){
  if(angle.label==0){hjust=0.5}else{hjust=0}
  requireNamespace("crayon")
  requireNamespace("ggplot2")
  requireNamespace("nortest")
  if(transf==1){resp=response+constant}else{if(transf!="angular"){resp=((response+constant)^transf-1)/transf}}
  # if(transf==1){resp=response+constant}else{resp=((response+constant)^transf-1)/transf}
  if(transf==0){resp=log(response+constant)}
  if(transf==0.5){resp=sqrt(response+constant)}
  if(transf==-0.5){resp=1/sqrt(response+constant)}
  if(transf==-1){resp=1/(response+constant)}
  if(transf=="angular"){resp=asin(sqrt((response+constant)/100))}

  if(transf==1){respAd=responseAd+constant}else{if(transf!="angular"){respAd=((responseAd+constant)^transf-1)/transf}}
  # if(transf==1){respAd=responseAd+constant}else{respAd=((responseAd+constant)^transf-1)/transf}
  if(transf==0){respAd=log(responseAd+constant)}
  if(transf==0.5){respAd=sqrt(responseAd+constant)}
  if(transf==-0.5){respAd=1/sqrt(responseAd+constant)}
  if(transf==-1){respAd=1/(responseAd+constant)}
  if(transf=="angular"){respAd=asin(sqrt((responseAd+constant)/100))}

  ordempadronizado=data.frame(f1,f2,block,resp,response)
  resp1=resp
  organiz=data.frame(f1,f2,block,response,resp)
  organiz=organiz[order(organiz$block),]
  organiz=organiz[order(organiz$f2),]
  organiz=organiz[order(organiz$f1),]
  f1=organiz$f1
  f2=organiz$f2
  block=organiz$block
  response=organiz$response
  resp=organiz$resp
  fator1=f1
  fator2=f2
  fator1a=fator1
  fator2a=fator2
  block=as.factor(block)

  if(is.na(sup==TRUE)){sup=0.1*mean(response)}
  Fator1=factor(fator1, levels = unique(fator1))
  Fator2=factor(fator2, levels = unique(fator2))
  nv1 <- length(summary(Fator1))
  nv2 <- length(summary(Fator2))
  lf1 <- levels(Fator1)
  lf2 <- levels(Fator2)
  fatores <- cbind(fator1, fator2)
  J = length(respAd)
  n.trat2 <- nv1 * nv2
  anavaF2 <- summary(aov(resp ~ Fator1 * Fator2 + block))
  anava=anavaF2[[1]][c(1:4),]
  col1 <- numeric(0)
  for (i in 1:n.trat2) {
    col1 <- c(col1, rep(i, J))
  }
  col1 <- c(col1, rep("ad", J))
  col2 <- c(block, rep(1:J))
  col3 <- c(resp, respAd)
  tabF2ad <- data.frame(TRAT2 = col1, REP = col2, RESP2 = col3)
  TRAT2 <- factor(tabF2ad[, 1])
  REP <- factor(tabF2ad$REP)
  anavaf1 <- aov(tabF2ad[, 3] ~ TRAT2+REP)
  anavaTr <- summary(anavaf1)[[1]]
  anava1=rbind(anava,anavaTr[c(1,3),])
  anava1[3,]=anavaTr[2,]
  anava1$Df[5]=1
  anava1$`Sum Sq`[5]=anava1$`Sum Sq`[5]-sum(anava1$`Sum Sq`[c(1,2,4)])
  anava1$`Mean Sq`[5]=anava1$`Sum Sq`[5]/anava1$Df[5]
  anava1$`F value`[1:5]=anava1$`Mean Sq`[1:5]/anava1$`Mean Sq`[6]
  for(i in 1:nrow(anava1)-1){
    anava1$`Pr(>F)`[i]=1-pf(anava1$`F value`[i],anava1$Df[i],anava1$Df[6])
  }
  rownames(anava1)[5]="Ad x Factorial"
  anava=anava1
  b=aov(resp ~ as.factor(f1) * as.factor(f2)+as.factor(block),data = ordempadronizado)
  an=anova(b)
  respad=b$residuals/sqrt(an$`Mean Sq`[5])
  out=respad[respad>3 | respad<(-3)]
  out=names(out)
  out=if(length(out)==0)("No discrepant point")else{out}

  if(norm=="sw"){norm1 = shapiro.test(b$res)}
  if(norm=="li"){norm1=lillie.test(b$residuals)}
  if(norm=="ad"){norm1=ad.test(b$residuals)}
  if(norm=="cvm"){norm1=cvm.test(b$residuals)}
  if(norm=="pearson"){norm1=pearson.test(b$residuals)}
  if(norm=="sf"){norm1=sf.test(b$residuals)}
  trat=as.factor(paste(Fator1,Fator2))
  c=aov(resp~trat)
  if(homog=="bt"){
    homog1 = bartlett.test(b$res ~ trat)
    statistic=homog1$statistic
    phomog=homog1$p.value
    method=paste("Bartlett test","(",names(statistic),")",sep="")
  }
  if(homog=="levene"){
    homog1 = levenehomog(c$res~trat)
    statistic=homog1$`F value`[1]
    phomog=homog1$`Pr(>F)`[1]
    method="Levene's Test (center = median)(F)"
    names(homog1)=c("Df", "statistic","p.value")}

  indep = dwtest(b)
  Ids=ifelse(respad>3 | respad<(-3), "darkblue","black")
  residplot=ggplot(data=data.frame(respad,Ids),
                   aes(y=respad,x=1:length(respad)))+
    geom_point(shape=21,color="gray",fill="gray",size=3)+
    labs(x="",y="Standardized residuals")+
    geom_text(x=1:length(respad),label=1:length(respad),
              color=Ids,size=labelsize)+
    scale_x_continuous(breaks=1:length(respad))+
    theme_classic()+theme(axis.text.y = element_text(size=textsize),
                          axis.text.x = element_blank())+
    geom_hline(yintercept = c(0,-3,3),lty=c(1,2,2),color="red",size=1)

  cat(green(bold("\n-----------------------------------------------------------------\n")))
  cat(green(bold("Normality of errors")))
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  normal=data.frame(Method=paste(norm1$method,"(",names(norm1$statistic),")",sep=""),
                    Statistic=norm1$statistic,
                    "p-value"=norm1$p.value)
  rownames(normal)=""
  print(normal)
  cat("\n")

  message(if(norm1$p.value>0.05){
    black("As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, errors can be considered normal")}
    else {"As the calculated p-value is less than the 5% significance level, H0 is rejected. Therefore, errors do not follow a normal distribution"})
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  cat(green(bold("Homogeneity of Variances")))
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  homoge=data.frame(Method=method,
                    Statistic=statistic,
                    "p-value"=phomog)
  rownames(homoge)=""
  print(homoge)
  cat("\n")

  message(if(homog1$p.value[1]>0.05){
    black("As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, the variances can be considered homogeneous")}
    else {"As the calculated p-value is less than the 5% significance level, H0 is rejected. Therefore, the variances are not homogeneous"})
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  cat(green(bold("Independence from errors")))
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  indepe=data.frame(Method=paste(indep$method,"(",
                                 names(indep$statistic),")",sep=""),
                    Statistic=indep$statistic,
                    "p-value"=indep$p.value)
  rownames(indepe)=""
  print(indepe)
  cat("\n")

  message(if(indep$p.value>0.05){
    black("As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, errors can be considered independent")}
    else {"As the calculated p-value is less than the 5% significance level, H0 is rejected. Therefore, errors are not independent"})
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  cat(green(bold("Additional Information")))
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  cat(paste("\nCV (%) = ",round(sqrt(anava$`Mean Sq`[6])/mean(c(resp,respAd),na.rm=TRUE)*100,2)))
  cat(paste("\nMean Factorial = ",round(mean(response,na.rm=TRUE),4)))
  cat(paste("\nMedian Factorial = ",round(median(response,na.rm=TRUE),4)))
  cat(paste("\nMean Aditional = ",round(mean(responseAd,na.rm=TRUE),4)))
  cat(paste("\nMedian Aditional = ",round(median(responseAd,na.rm=TRUE),4)))
  cat("\nPossible outliers = ", out)
  cat("\n")
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  cat(green(bold("Analysis of Variance")))
  cat(green(bold("\n-----------------------------------------------------------------\n")))
  anava1=as.matrix(data.frame(anava))
  colnames(anava1)=c("Df","Sum Sq","Mean.Sq","F value","Pr(F)" )
  rownames(anava1)=c(names.fat[1],names.fat[2],"Block",
                     paste(names.fat[1],"x",names.fat[2]),"Ad x Factorial","Residuals")
  print(anava1,na.print = "")
  cat("\n")
  if(anava$`Pr(>F)`[5]<alpha.f){"The additional treatment does differ from the factorial by the F test"}else{"The additional treatment does not differ from the factorial by the F test "}
  if(transf==1 && norm1$p.value<0.05 | transf==1 && indep$p.value<0.05 | transf==1 &&homog1$p.value<0.05){
    message("\nYour analysis is not valid, suggests using a non-parametric test and try to transform the data\n")}else{}
  if(transf != 1 && norm1$p.value<0.05 | transf!=1 && indep$p.value<0.05 | transf!=1 && homog1$p.value<0.05){
    message("\nYour analysis is not valid, suggests using the function FATDIC.art\n")}else{}
  message(if(transf !=1){blue("NOTE: resp = transformed means; respO = averages without transforming\n")})

  if (anava$`Pr(>F)`[4] > alpha.f)
  { cat(green(bold("-----------------------------------------------------------------\n")))
    cat(green(bold("No significant interaction")))
    cat(green(bold("\n-----------------------------------------------------------------\n")))
    fatores <- data.frame(Fator1 = factor(fator1), Fator2 = factor(fator2))
    fatoresa <- data.frame(Fator1 = fator1a, Fator2 = fator2a)
    graficos=list(1,2,3)

    for (i in 1:2) {if (anava$`Pr(>F)`[i] <= alpha.f)
    {cat(green(bold("\n-----------------------------------------------------------------\n")))
      cat(bold(names.fat[i]))
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      if(quali[i]==TRUE){
        if(mcomp=="tukey"){
          letra <- TUKEY(resp, fatores[,i], anava$Df[6],
                            anava$`Mean Sq`[6], alpha=alpha.t)
          letra1 <- letra$groups; colnames(letra1)=c("resp","groups")
          if(transf !=1){letra1$respo=tapply(response,fatores[,i],mean, na.rm=TRUE)[rownames(letra1)]}}
        if(mcomp=="lsd"){
          letra <- LSD(resp, fatores[,i], anava$Df[6],anava$`Mean Sq`[6],alpha=alpha.t)
          letra1 <- letra$groups; colnames(letra1)=c("resp","groups")
          if(transf !=1){letra1$respo=tapply(response,fatores[,i],mean, na.rm=TRUE)[rownames(letra1)]}}
        if (mcomp == "sk"){
          nrep=table(fatores[i])[1]
          medias=sort(tapply(resp,fatores[i],mean, na.rm=TRUE),decreasing = TRUE)
          sk=scottknott(means = medias,
                        df1 = anava$Df[5],
                        nrep = nrep,
                        QME = anava$`Mean Sq`[5],
                        alpha = alpha.t)
          letra1=data.frame(resp=medias,groups=sk)
          if(transf !=1){letra1$respo=tapply(response,fatores[,i],mean, na.rm=TRUE)[rownames(letra1)]}}
        if(mcomp=="duncan"){
          letra <- duncan(resp, fatores[,i],anava$Df[6],anava$`Mean Sq`[6], alpha=alpha.t)
          letra1 <- letra$groups; colnames(letra1)=c("resp","groups")
          if(transf !=1){letra1$respo=tapply(response,fatores[,i],mean, na.rm=TRUE)[rownames(letra1)]}}
        teste=if(mcomp=="tukey"){"Tukey HSD"}else{
          if(mcomp=="sk"){"Scott-Knott"}else{
            if(mcomp=="lsd"){"LSD-Fischer"}else{
              if(mcomp=="duncan"){"Duncan"}}}}
        cat(green(italic(paste("Multiple Comparison Test:",teste,"\n"))))
        print(letra1)
        ordem=unique(as.vector(unlist(fatores[i])))
        #=====================================================
        if(point=="mean_sd"){desvio=tapply(response, c(fatores[i]), sd, na.rm=TRUE)[ordem]}
        if(point=="mean_se"){desvio=(tapply(response, c(fatores[i]), sd, na.rm=TRUE)/
                                       sqrt(tapply(response, c(fatores[i]), length)))[ordem]}
        dadosm=data.frame(letra1[ordem,],
                          media=tapply(response, c(fatores[i]), mean, na.rm=TRUE)[ordem],
                          desvio=desvio)
        dadosm$trats=factor(rownames(dadosm),levels = ordem)
        dadosm$limite=dadosm$media+dadosm$desvio
        lim.y=dadosm$limite[which.max(abs(dadosm$limite))]
        if(is.na(ylim[1])==TRUE && lim.y<0){ylim=c(1.5*lim.y,0)}
        if(is.na(ylim[1])==TRUE && lim.y>0){ylim=c(0,1.5*lim.y)}
        if(addmean==TRUE){dadosm$letra=paste(format(dadosm$media,digits = dec),dadosm$groups)}
        if(addmean==FALSE){dadosm$letra=dadosm$groups}
        media=dadosm$media
        desvio=dadosm$desvio
        trats=dadosm$trats
        letra=dadosm$letra
        if(geom=="bar"){grafico=ggplot(dadosm,
                                       aes(x=trats,
                                           y=media))
        if(fill=="trat"){grafico=grafico+
          geom_col(aes(fill=trats),color=1,width = width.column)}
        else{grafico=grafico+
          geom_col(aes(fill=trats),
                   fill=fill,color=1,width = width.column)}
        grafico=grafico+theme+ylab(ylab)+xlab(parse(text = xlab.factor[i]))+ylim(ylim)
        if(errorbar==TRUE){grafico=grafico+
          geom_text(aes(y=media+
                          sup+if(sup<0){-desvio}else{desvio},
                        label=letra),family=family,angle=angle.label, hjust=hjust,size=labelsize)}
        if(errorbar==FALSE){grafico=grafico+
          geom_text(aes(y=media+sup,
                        label=letra),family=family,angle=angle.label, hjust=hjust,size=labelsize)}
        if(errorbar==TRUE){grafico=grafico+
          geom_errorbar(data=dadosm,
                        aes(ymin=media-desvio,
                            ymax=media+desvio,color=1),
                        color="black",width=width.bar)}
        if(angle !=0){grafico=grafico+theme(axis.text.x=element_text(hjust = 1.01,angle = angle))}
        grafico=grafico+
          theme(text = element_text(size=textsize,color="black",family=family),
                axis.text = element_text(size=textsize,color="black",family=family),
                axis.title = element_text(size=textsize,color="black",family=family))}

        if(geom=="point"){grafico=ggplot(dadosm,
                                         aes(x=trats,
                                             y=media))
        if(fill=="trat"){grafico=grafico+
          geom_point(aes(color=trats),size=5)}
        else{grafico=grafico+
          geom_point(aes(color=trats),fill="gray",pch=21,color="black",size=5)}
        grafico=grafico+theme+ylab(ylab)+xlab(parse(text = xlab.factor[i]))+ylim(ylim)
        if(errorbar==TRUE){grafico=grafico+
          geom_text(aes(y=media+sup+
                          if(sup<0){-desvio}else{desvio},
                        label=letra),family=family,angle=angle.label, hjust=hjust,size=labelsize)}
        if(errorbar==FALSE){grafico=grafico+
          geom_text(aes(y=media+sup,label=letra),family=family,angle=angle.label, hjust=hjust,size=labelsize)}
        if(errorbar==TRUE){grafico=grafico+
          geom_errorbar(data=dadosm,
                        aes(ymin=media-desvio,
                            ymax=media+desvio,color=1),
                        color="black", width=width.bar)}
        if(angle !=0){grafico=grafico+theme(axis.text.x=element_text(hjust = 1.01,angle = angle))}
        grafico=grafico+
          theme(text = element_text(size=textsize,color="black",family=family),
                axis.text = element_text(size=textsize,color="black",family=family),
                axis.title = element_text(size=textsize,color="black",family=family))}
        grafico=grafico+
          geom_hline(aes(color=ad.label,group=ad.label,yintercept=mean(responseAd,na.rm=TRUE)),lty=2)+
          scale_color_manual(values = "black")+labs(color="")
        if(CV==TRUE){grafico=grafico+labs(caption=paste("p-value = ", if(anava$`Pr(>F)`[i]<0.0001){paste("<", 0.0001)}
                                                        else{paste("=", round(anava$`Pr(>F)`[i],4))},"; CV = ",
                                                        round(abs(sqrt(anava$`Mean Sq`[6])/mean(c(resp,respAd),na.rm=TRUE))*100,2),"%"))}
        if(color=="gray"){grafico=grafico+scale_fill_grey()}
        print(grafico)
        cat("\n\n")
      }

      if(quali[i]==FALSE){
        dose=as.vector(unlist(fatoresa[i]))
        grafico=polynomial(dose,
                           response,
                           grau = grau[i],
                           ylab=ylab,
                           xlab=parse(text = xlab.factor[i]),
                           posi=posi,
                           theme=theme,
                           textsize=textsize,
                           point=point,
                           family=family,SSq = anava$`Sum Sq`[6],DFres = anava$Df[6])
        grafico=grafico[[1]]+
          geom_hline(aes(color=ad.label,group=ad.label,yintercept=mean(responseAd,na.rm=TRUE)),lty=2)+
          scale_color_manual(values = "black")+labs(color="")}

      graficos[[i+1]]=grafico}}
    graficos[[1]]=residplot
    if(anava$`Pr(>F)`[1]>=alpha.f && anava$`Pr(>F)`[2] <alpha.f){
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      cat(green("Isolated factors 1 not significant"))
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      d1=data.frame(tapply(response,fator1,mean, na.rm=TRUE))
      colnames(d1)="Mean"
      print(d1)
    }
    if(anava$`Pr(>F)`[1]<alpha.f && anava$`Pr(>F)`[2] >=alpha.f){
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      cat(green("Isolated factors 2 not significant"))
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      d1=data.frame(tapply(response,fator2,mean, na.rm=TRUE))
      colnames(d1)="Mean"
      print(d1)}
    if(anava$`Pr(>F)`[1]>=alpha.f && anava$`Pr(>F)`[2] >=alpha.f){
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      cat(green("Isolated factors not significant"))
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      print(tapply(response,list(fator1,fator2),mean, na.rm=TRUE))}
  }

  if (anava$`Pr(>F)`[4]  <= alpha.f) {
    fatores <- data.frame(Fator1, Fator2)
    cat(green(bold("-----------------------------------------------------------------\n")))
    cat(green(bold("Significant interaction: analyzing the interaction")))
    cat(green(bold("\n-----------------------------------------------------------------\n")))
    des1<-aov(resp~Fator2/Fator1+block)
    cat("\n-----------------------------------------------------------------\n")
    cat("Analyzing ", names.fat[1], " inside of the level of ",names.fat[2])
    cat("\n-----------------------------------------------------------------\n")
    cat("\n")

    l1<-vector('list',nv2)
    names(l1)<-names(summary(Fator2))
    v<-numeric(0)
    for(j in 1:nv2) {
      for(i in 0:(nv1-2)) v<-cbind(v,i*nv2+j)
      l1[[j]]<-v
      v<-numeric(0)
    }
    des1.tab<-summary(des1,split=list('Fator2:Fator1'=l1))[[1]]
    nlinhas=nrow(des1.tab)
    des1.tab=des1.tab[-c(nlinhas),]
    des1.tab$`F value`=des1.tab$`Mean Sq`/anava$`Mean Sq`[6]
    des1.tab$`Pr(>F)`=1-pf(des1.tab$`F value`,des1.tab$Df,anava$Df[6])
    rn<-numeric(0)
    for (j in 1:nv2) {
      rn <- c(rn, paste(paste(names.fat[1], ":", names.fat[2],
                              sep = ""), lf2[j]))
    }
    rownames(des1.tab)=c(names.fat[2],"Block",
                         paste(names.fat[1],"x",names.fat[2],"+",names.fat[1]),
                         paste("  ",rn))
    print(des1.tab)
    desdobramento1=des1.tab
    if(quali[1]==TRUE & quali[2]==TRUE){
      if (mcomp == "tukey"){
        tukeygrafico=c()
        ordem=c()
        for (i in 1:nv2) {
          trati=fatores[, 1][Fator2 == lf2[i]]
          respi=resp[Fator2 == lf2[i]]
          tukey=TUKEY(respi,trati,anava$Df[6],anava$`Mean Sq`[6],alpha.t)
          if(transf !="1"){tukey$groups$respo=tapply(response[Fator2 == lf2[i]],trati,
                                                     mean, na.rm=TRUE)[rownames(tukey$groups)]}
          tukeygrafico[[i]]=tukey$groups[as.character(unique(trati)),2]
          ordem[[i]]=rownames(tukey$groups[as.character(unique(trati)),])
        }
        letra=unlist(tukeygrafico)
        datag=data.frame(letra, ordem=unlist(ordem))
        datag=datag[order(factor(datag$ordem,levels=unique(Fator1))),]
        letra=datag$letra
      }
      if (mcomp == "duncan"){
        duncangrafico=c()
        ordem=c()
        for (i in 1:nv2) {
          trati=fatores[, 1][Fator2 == lf2[i]]
          respi=resp[Fator2 == lf2[i]]
          duncan=duncan(respi,trati,anava$Df[6],anava$`Mean Sq`[6],alpha.t)
          if(transf !="1"){duncan$groups$respo=tapply(response[Fator2 == lf2[i]],
                                                      trati,mean, na.rm=TRUE)[rownames(duncan$groups)]}
          duncangrafico[[i]]=duncan$groups[as.character(unique(trati)),2]
          ordem[[i]]=rownames(duncan$groups[as.character(unique(trati)),])
        }
        letra=unlist(duncangrafico)
        datag=data.frame(letra, ordem=unlist(ordem))
        datag=datag[order(factor(datag$ordem,levels=unique(Fator1))),]
        letra=datag$letra
      }
      if (mcomp == "lsd"){
        duncangrafico=c()
        ordem=c()
        for (i in 1:nv2) {
          trati=fatores[, 1][Fator2 == lf2[i]]
          respi=resp[Fator2 == lf2[i]]
          lsd=LSD(respi,trati,anava$Df[6],anava$`Mean Sq`[6],alpha.t)
          if(transf !="1"){lsd$groups$respo=tapply(response[Fator2 == lf2[i]],trati,
                                                   mean, na.rm=TRUE)[rownames(lsd$groups)]}
          duncangrafico[[i]]=lsd$groups[as.character(unique(trati)),2]
          ordem[[i]]=rownames(lsd$groups[as.character(unique(trati)),])
        }
        letra=unlist(duncangrafico)
        datag=data.frame(letra, ordem=unlist(ordem))
        datag=datag[order(factor(datag$ordem,levels=unique(Fator1))),]
        letra=datag$letra
      }
      if (mcomp == "sk"){
        skgrafico=c()
        ordem=c()
        for (i in 1:nv2) {
          trati=fatores[, 1][Fator2 == lf2[i]]
          trati=factor(trati,levels = unique(trati))
          respi=resp[Fator2 == lf2[i]]
          nrep=table(trati)[1]
          medias=sort(tapply(respi,trati,mean),decreasing = TRUE)
          sk=scottknott(means = medias,
                        df1 = anava$Df[6],
                        nrep = nrep,
                        QME = anava$`Mean Sq`[6],
                        alpha = alpha.t)
          sk=data.frame(respi=medias,groups=sk)
          # sk=sk(respi,trati,anava$Df[6],anava$`Sum Sq`[6],alpha.t)
          if(transf !="1"){sk$groups$respo=tapply(respi,trati,mean, na.rm=TRUE)[rownames(sk)]}
          skgrafico[[i]]=sk[levels(trati),2]
          ordem[[i]]=rownames(sk[levels(trati),])
        }
        letra=unlist(skgrafico)
        datag=data.frame(letra,ordem=unlist(ordem))
        datag$ordem=factor(datag$ordem,levels = unique(datag$ordem))
        datag=datag[order(datag$ordem),]
        letra=datag$letra}
    }

    cat("\n-----------------------------------------------------------------\n")
    cat("Analyzing ", names.fat[2], " inside of the level of ",names.fat[1])
    cat("\n-----------------------------------------------------------------\n")
    cat("\n")
    des1<-aov(resp~Fator1/Fator2+block)

    l1<-vector('list',nv1)
    names(l1)<-names(summary(Fator1))
    v<-numeric(0)
    for(j in 1:nv1) {
      for(i in 0:(nv2-2)) v<-cbind(v,i*nv1+j)
      l1[[j]]<-v
      v<-numeric(0)
    }
    des1.tab<-summary(des1,split=list('Fator1:Fator2'=l1))[[1]]
    nlinhas=nrow(des1.tab)
    des1.tab=des1.tab[-c(nlinhas),]
    des1.tab$`F value`=des1.tab$`Mean Sq`/anava$`Mean Sq`[6]
    des1.tab$`Pr(>F)`=1-pf(des1.tab$`F value`,des1.tab$Df,anava$Df[6])
    rn<-numeric(0)
    for (i in 1:nv1) {
      rn <- c(rn, paste(paste(names.fat[2], ":", names.fat[1],
                              sep = ""), lf1[i]))
    }
    rownames(des1.tab)=c(names.fat[1],"Block",
                         paste(names.fat[1],"x",names.fat[2],"+",names.fat[2]),
                         paste("  ",rn))
    print(des1.tab)
    desdobramento2=des1.tab

    if(quali[1]==TRUE & quali[2]==TRUE){
      if (mcomp == "tukey"){
        tukeygrafico1=c()
        for (i in 1:nv1) {
          trati=fatores[, 2][Fator1 == lf1[i]]
          respi=resp[Fator1 == lf1[i]]
          tukey=TUKEY(respi,trati,anava$Df[6],anava$`Mean Sq`[6],alpha.t)
          if(transf !="1"){tukey$groups$respo=tapply(response[Fator1 == lf1[i]],trati,mean, na.rm=TRUE)[rownames(tukey$groups)]}
          tukeygrafico1[[i]]=tukey$groups[as.character(unique(trati)),2]
        }
        letra1=unlist(tukeygrafico1)
        letra1=toupper(letra1)}
      if (mcomp == "duncan"){
        duncangrafico1=c()
        for (i in 1:nv1) {
          trati=fatores[, 2][Fator1 == lf1[i]]
          respi=resp[Fator1 == lf1[i]]
          duncan=duncan(respi,trati,anava$Df[6],anava$`Mean Sq`[6],alpha.t)
          if(transf !="1"){duncan$groups$respo=tapply(response[Fator1 == lf1[i]],trati,mean, na.rm=TRUE)[rownames(duncan$groups)]}
          duncangrafico1[[i]]=duncan$groups[as.character(unique(trati)),2]
        }
        letra1=unlist(duncangrafico1)
        letra1=toupper(letra1)}
      if (mcomp == "lsd"){
        lsdgrafico1=c()
        for (i in 1:nv1) {
          trati=fatores[, 2][Fator1 == lf1[i]]
          respi=resp[Fator1 == lf1[i]]
          lsd=LSD(respi,trati,anava$Df[6],anava$`Mean Sq`[6],alpha.t)
          if(transf !="1"){lsd$groups$respo=tapply(response[Fator1 == lf1[i]],trati,mean, na.rm=TRUE)[rownames(lsd$groups)]}
          lsdgrafico1[[i]]=lsd$groups[as.character(unique(trati)),2]
        }
        letra1=unlist(lsdgrafico1)
        letra1=toupper(letra1)}
      if (mcomp == "sk"){
        skgrafico1=c()
        for (i in 1:nv1) {
          trati=fatores[, 2][Fator1 == lf1[i]]
          trati=factor(trati,levels = unique(trati))
          respi=resp[Fator1 == lf1[i]]
          nrep=table(trati)[1]
          medias=sort(tapply(respi,trati,mean),decreasing = TRUE)
          sk=scottknott(means = medias,
                        df1 = anava$Df[6],
                        nrep = nrep,
                        QME = anava$`Mean Sq`[6],
                        alpha = alpha.t)
          sk=data.frame(respi=medias,groups=sk)
          if(transf !="1"){sk$respo=tapply(respi,trati,mean, na.rm=TRUE)[rownames(sk)]}
          skgrafico1[[i]]=sk[levels(trati),2]
        }
        letra1=unlist(skgrafico1)
        letra1=toupper(letra1)}
    }

    if(quali[1]==FALSE && color=="gray"| quali[2]==FALSE && color=="gray"){
      if(quali[2]==FALSE){
        Fator2=fator2a#as.numeric(as.character(Fator2))
        grafico=polynomial2(Fator2,response,Fator1,
                            grau = grau21,
                            ylab=ylab,
                            xlab=xlab,
                            theme=theme,
                            posi=posi,
                            point=point,
                            textsize=textsize,
                            family=family,
                            ylim=ylim,SSq = anava$`Sum Sq`[6],DFres = anava$Df[6])+
          geom_hline(aes(color=ad.label,yintercept=mean(responseAd,na.rm=TRUE)),lty=2)+
          scale_color_manual(values = "black")+labs(color="")}
      if(quali[2]==TRUE){
        Fator1=fator1a
        grafico=polynomial2(Fator1,
                            response,
                            Fator2,
                            grau = grau12,
                            ylab=ylab,
                            xlab=xlab,
                            theme=theme,
                            posi=posi,
                            point=point,
                            textsize=textsize,
                            family=family,
                            ylim=ylim,SSq = anava$`Sum Sq`[6],DFres = anava$Df[6])+
          geom_hline(aes(color=ad.label,yintercept=mean(responseAd,na.rm=TRUE)),lty=2)+
          scale_color_manual(values = "black")+labs(color="")}
    }
    if(quali[1]==FALSE && color=="rainbow"| quali[2]==FALSE && color=="rainbow"){
      if(quali[2]==FALSE){
        Fator2=fator2a
        grafico=polynomial2_color(Fator2,
                                  response,
                                  Fator1,
                                  grau = grau21,
                                  ylab=ylab,
                                  xlab=xlab,
                                  theme=theme,
                                  posi=posi,
                                  point=point,
                                  textsize=textsize,
                                  family=family,
                                  ylim=ylim,SSq = anava$`Sum Sq`[6],DFres = anava$Df[6])+
          geom_hline(aes(color=ad.label,group=ad.label,yintercept=mean(responseAd,na.rm=TRUE)),lty=2)+
          scale_color_manual(values = "black")+labs(color="")}
      if(quali[2]==TRUE){
        Fator1=fator1a
        grafico=polynomial2_color(Fator1,
                                  response,
                                  Fator2,
                                  grau = grau12,
                                  ylab=ylab,
                                  xlab=xlab,
                                  theme=theme,
                                  posi=posi,
                                  point=point,
                                  textsize=textsize,
                                  family=family,
                                  ylim=ylim,SSq = anava$`Sum Sq`[6],DFres = anava$Df[6])+
          geom_hline(aes(color=ad.label,group=ad.label,yintercept=mean(responseAd,na.rm=TRUE)),lty=2)+
          scale_color_manual(values = "black")+labs(color="")}
    }
    if(quali[1] & quali[2]==TRUE){
      media=tapply(response,list(Fator1,Fator2), mean, na.rm=TRUE)
      # desvio=tapply(response,list(Fator1,Fator2), sd, na.rm=TRUE)
      if(point=="mean_sd"){desvio=tapply(response,list(Fator1,Fator2), sd, na.rm=TRUE)}
      if(point=="mean_se"){desvio=tapply(response,list(Fator1,Fator2), sd, na.rm=TRUE)/
        sqrt(tapply(response,list(Fator1,Fator2), length))}

      graph=data.frame(f1=rep(rownames(media),length(colnames(media))),
                       f2=rep(colnames(media),e=length(rownames(media))),
                       media=as.vector(media),
                       desvio=as.vector(desvio))
      limite=graph$media+graph$desvio
      lim.y=limite[which.max(abs(limite))]
      if(is.na(ylim[1])==TRUE && lim.y<0){ylim=c(1.5*lim.y,0)}
      if(is.na(ylim[1])==TRUE && lim.y>0){ylim=c(0,1.5*lim.y)}
      rownames(graph)=paste(graph$f1,graph$f2)
      graph=graph[paste(rep(unique(Fator1),
                            e=length(colnames(media))),
                        rep(unique(Fator2),length(rownames(media)))),]
      graph$letra=letra
      graph$letra1=letra1
      graph$f1=factor(graph$f1,levels = unique(Fator1))
      graph$f2=factor(graph$f2,levels = unique(Fator2))
      if(addmean==TRUE){graph$numero=paste(format(graph$media,digits = dec), graph$letra,graph$letra1, sep="")}
      if(addmean==FALSE){graph$numero=paste(graph$letra,graph$letra1, sep="")}
      f1=graph$f1
      f2=graph$f2
      media=graph$media
      desvio=graph$desvio
      numero=graph$numero

      colint=ggplot(graph,
                    aes(x=f1,
                        y=media,
                        fill=f2))+
        geom_col(position = "dodge",color="black",width = width.column)+
        ylab(ylab)+xlab(xlab)+ylim(ylim)+
        theme
      if(errorbar==TRUE){colint=colint+
        geom_errorbar(data=graph,
                      aes(ymin=media-desvio,
                          ymax=media+desvio),
                      width=width.bar,color="black",
                      position = position_dodge(width=width.column))}
      if(errorbar==TRUE){colint=colint+
        geom_text(aes(y=media+sup+if(sup<0){-desvio}else{desvio},
                      label=numero),
                  position = position_dodge(width=width.column),
                  family = family,angle=angle.label,hjust=hjust,size=labelsize)}
      if(errorbar==FALSE){colint=colint+
        geom_text(aes(y=media+sup,label=numero),
                  position = position_dodge(width=width.column),
                  family = family,angle=angle.label, hjust=hjust,size=labelsize)}
      colint=colint+theme(text=element_text(size=textsize,family = family),
                          axis.text = element_text(size=textsize,color="black",family = family),
                          axis.title = element_text(size=textsize,color="black",family = family),
                          legend.text = element_text(family = family,size = textsize),
                          legend.title = element_text(family = family,size = textsize),
                          legend.position = posi)+labs(fill=legend)+
        geom_hline(aes(color=ad.label,yintercept=mean(responseAd,na.rm=TRUE)),lty=2)+
        scale_color_manual(values = "black")+labs(color="")
      if(CV==TRUE){colint=colint+labs(caption=paste("p-value ", if(anava$`Pr(>F)`[4]<0.0001){paste("<", 0.0001)}
                                                    else{paste("=", round(anava$`Pr(>F)`[4],4))},"; CV = ",
                                                    round(abs(sqrt(anava$`Mean Sq`[6])/mean(c(resp,respAd),na.rm=TRUE))*100,2),"%"))}
      if(angle !=0){colint=colint+
        theme(axis.text.x=element_text(hjust = 1.01,angle = angle))}
      if(color=="gray"){colint=colint+scale_fill_grey()}
      print(colint)
      grafico=colint
      letras=paste(graph$letra,
                   graph$letra1,
                   sep="")
      matriz=data.frame(t(matrix(paste(format(graph$media,digits = dec),letras),ncol = length(levels(Fator1)))))
      rownames(matriz)=levels(Fator1)
      colnames(matriz)=levels(Fator2)
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      cat(green(bold("Final table")))
      cat(green(bold("\n-----------------------------------------------------------------\n")))
      print(matriz)
      message(black("\n\nAverages followed by the same lowercase letter in the column and \nuppercase in the row do not differ by the",mcomp,"(p<",alpha.t,")"))
    }
  }
  if(anava$`Pr(>F)`[4]>alpha.f){
    names(graficos)=c("residplot","graph1","graph2")
    graficos}else{colints=list(residplot,grafico)}
}

Try the AgroR package in your browser

Any scripts or data that you put into this service are public.

AgroR documentation built on Sept. 14, 2023, 1:09 a.m.