knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 ) library(Analitica) data(d_e, package = "Analitica")
The Analitica
package provides essential tools for:
It is suitable for researchers, educators, and analysts seeking quick and interpretable workflows.
Use descripYG()
to explore a numeric variable, optionally grouped by a categorical variable:
data(d_e, package = "Analitica") descripYG(d_e, vd = Sueldo_actual) descripYG(d_e, vd = Sueldo_actual, vi = labor)
You can assess variance assumptions using manual implementations:
Levene.Test(Sueldo_actual ~ labor, data = d_e) BartlettTest(Sueldo_actual ~ labor, data = d_e) FKTest(Sueldo_actual ~ labor, data = d_e)
Detect univariate outliers with Grubbs' test:
res <- grubbs_outliers(d_e, Sueldo_actual) head(res[res$outL == TRUE, ])
Fit an ANOVA model and apply post hoc tests:
mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e) resultado <- GHTest(mod) summary(resultado) plot(resultado)
Other methods include TukeyTest()
, ScheffeTest()
, DuncanTest()
, SNKTest()
, T2Test()
, and T3Test()
.
When assumptions are violated, try:
g1 <- d_e$Sueldo_actual[d_e$labor == 1] g2 <- d_e$Sueldo_actual[d_e$labor == 2] MWTest(g1, g2) BMTest(g1, g2) BMpTest(g1, g2)
Analitica
integrates descriptive analysis with robust comparison methods for applied data exploration.
For detailed documentation, see ?Analitica
or function-specific help pages like ?GHTest
or ?descripYG
.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.