Introduction to Analitica

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.width = 7,
  fig.height = 5
)
library(Analitica)
data(d_e, package = "Analitica")

Overview

The Analitica package provides essential tools for:

It is suitable for researchers, educators, and analysts seeking quick and interpretable workflows.

1. Descriptive Analysis

Use descripYG() to explore a numeric variable, optionally grouped by a categorical variable:

data(d_e, package = "Analitica")
descripYG(d_e, vd = Sueldo_actual)
descripYG(d_e, vd = Sueldo_actual, vi = labor)

2. Homogeneity of Variance Tests

You can assess variance assumptions using manual implementations:

Levene.Test(Sueldo_actual ~ labor, data = d_e)
BartlettTest(Sueldo_actual ~ labor, data = d_e)
FKTest(Sueldo_actual ~ labor, data = d_e)

3. Outlier Detection

Detect univariate outliers with Grubbs' test:

res <- grubbs_outliers(d_e, Sueldo_actual)
head(res[res$outL == TRUE, ])

4. Multiple Comparisons (Post Hoc Tests)

Fit an ANOVA model and apply post hoc tests:

mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
resultado <- GHTest(mod)
summary(resultado)
plot(resultado)

Other methods include TukeyTest(), ScheffeTest(), DuncanTest(), SNKTest(), T2Test(), and T3Test().

5. Non-Parametric Tests

When assumptions are violated, try:

g1 <- d_e$Sueldo_actual[d_e$labor == 1]
g2 <- d_e$Sueldo_actual[d_e$labor == 2]
MWTest(g1, g2)
BMTest(g1, g2)
BMpTest(g1, g2)

Conclusion

Analitica integrates descriptive analysis with robust comparison methods for applied data exploration.

For detailed documentation, see ?Analitica or function-specific help pages like ?GHTest or ?descripYG.



Try the Analitica package in your browser

Any scripts or data that you put into this service are public.

Analitica documentation built on June 14, 2025, 9:07 a.m.