View source: R/BonferroniNPTest.R
BonferroniNPTest | R Documentation |
Performs all pairwise comparisons using the Wilcoxon rank-sum test (Mann-Whitney) with Bonferroni correction for multiple testing.
BonferroniNPTest(formula, data, alpha = 0.05)
formula |
A formula of the form |
data |
A data frame containing the variables. |
alpha |
Significance level (default is 0.05). |
Suitable for non-parametric data where ANOVA assumptions are violated.
Advantages: - Simple and intuitive non-parametric alternative to ANOVA post hoc tests. - Strong control of Type I error via Bonferroni correction. - Works with unequal group sizes.
Disadvantages: - Conservative with many groups. - Only valid for pairwise comparisons; does not support complex contrasts.
An object of class "bonferroni_np"
and "comparaciones"
, containing:
Resultados
: Data frame with comparisons, W-statistics, raw and adjusted p-values, and significance levels.
Promedios
: Mean ranks of each group.
Orden_Medias
: Group names ordered from highest to lowest rank.
Metodo
: Name of the method used ("Bonferroni (non-parametric)").
Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6), 80–83. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/3001968")}
Dunn, O. J. (1964). Multiple Comparisons Using Rank Sums. Technometrics, 6(3), 241–252. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00401706.1964.10490181")}
Shaffer, J. P. (1995). Multiple Hypothesis Testing. Annual Review of Psychology, 46(1), 561–584. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1146/annurev.ps.46.020195.003021")}
data(iris)
BonferroniNPTest(Sepal.Length ~ Species, data = iris)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.