| DuncanTest | R Documentation |
Performs the Duncan test for pairwise comparisons after an ANOVA. This method is more liberal than Tukey's HSD, using a stepwise approach with critical values from the studentized range distribution.
DuncanTest(modelo, comparar = NULL, alpha = 0.05)
modelo |
An |
comparar |
Character vector with the name(s) of the factor(s) to compare:
- One name: main effect (e.g., "treatment" or "A")
- Several names: interaction (e.g., |
alpha |
Significance level (default 0.05). |
Advantages: - High power for detecting differences. - Simple to interpret and implement.
Disadvantages: - Inflates Type I error rate. - Not recommended for confirmatory research.
An object of class "duncan" and "comparaciones" containing:
Resultados: a data.frame with columns Comparacion, Diferencia, SE, t_value,
p_value (unadjusted), p_ajustada (duncan), Valor_Critico (critical difference), and Significancia.
Promedios: a named vector of group means as defined by comparar.
Orden_Medias: group names ordered from highest to lowest mean.
Metodo: "Duncan t-test".
Termino: the term being compared (e.g., "A", "B", or "A:B").
MSerror, df_error, N: useful for plots with error bars.
Duncan, D. B. (1955). "Multiple range and multiple F tests." Biometrics, 11(1), 1-42.
# DCA
data(d_e, package = "Analitica")
mod1 <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
resultado <- DuncanTest(mod1)
summary(resultado)
plot(resultado)
# DBA
mod2 <- aov(Sueldo_actual ~ as.factor(labor) + Sexo, data = d_e)
res <- DuncanTest(mod2, comparar = "as.factor(labor)")
summary(res); plot(res)
# DFactorial
mod3 <- aov(Sueldo_actual ~as.factor(labor) * Sexo, data = d_e)
resAB <- DuncanTest(mod3, comparar = c("as.factor(labor)","Sexo")) # celdas A:B
summary(resAB, n = Inf); plot(resAB, horizontal = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.