| HolmTest | R Documentation |
Performs pairwise t-tests with p-values adjusted using Holm’s sequential method.
HolmTest(modelo, comparar = NULL, alpha = 0.05)
modelo |
An |
comparar |
Character vector with the name(s) of the factor(s) to compare:
- One name: main effect (e.g., "treatment" or "A")
- Several names: interaction (e.g., |
alpha |
Significance level (default 0.05). |
Advantages: - Controls family-wise error rate more efficiently than Bonferroni. - Easy to apply over any set of p-values.
Disadvantages: - Does not adjust test statistics, only p-values. - Slightly more conservative than false discovery rate (FDR) methods.
An object of class "holm" and "comparaciones" containing:
Resultados: a data.frame with columns Comparacion, Diferencia, SE, t_value,
p_value (unadjusted), p_ajustada (Holm), Valor_Critico (critical difference), and Significancia.
Promedios: a named vector of group means as defined by comparar.
Orden_Medias: group names ordered from highest to lowest mean.
Metodo: "Holm t-test".
Termino: the term being compared (e.g., "A", "B", or "A:B").
MSerror, df_error, N: useful for plots with error bars.
Holm, S. (1979). A simple sequentially rejective multiple test procedure.Scandinavian Journal of Statistics, 6(2), 65–70.
data(d_e, package = "Analitica")
mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
resultado <- HolmTest(mod)
summary(resultado)
plot(resultado)
# RCBD
mod <- aov(Sueldo_actual ~ as.factor(labor) + Sexo, data = d_e)
res <- HolmTest(mod, comparar = "as.factor(labor)")
summary(res); plot(res) # usa p_ajustada automaticamente
# Factorial
mod2 <- aov(Sueldo_actual ~ as.factor(labor) * Sexo, data = d_e)
resAB <- HolmTest(mod2, comparar = c("as.factor(labor)","Sexo"))
summary(resAB, n = Inf); plot(resAB, horizontal = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.