| DSCFTest | R Documentation |
Robust non-parametric method for multiple comparisons after Kruskal-Wallis. Uses rank-based pairwise tests with a pooled variance estimate.
DSCFTest(
formula,
data,
alpha = 0.05,
method.p = "holm",
na.rm = TRUE,
include_kw = TRUE
)
formula |
y ~ group |
data |
data.frame con las variables |
alpha |
nivel (0.05 por defecto) just for the little star |
method.p |
adjustment method (default "holm") |
na.rm |
remove NA (TRUE by default) |
include_kw |
if TRUE, add summary of Kruskal-Wallis test |
Advantages: - Strong control of Type I error with unequal sample sizes. - More powerful than Dunn in many conditions.
Disadvantages: - Computationally more complex. - Less commonly available in standard software. - It is only useful in completely random or single-factor designs.
objeto con clases c("comparaciones","dscf")
Dwass, M. (1960). Some k-sample rank-order tests. In I. Olkin et al. (Eds.), Contribution1s to Probability and Statistics: Essays in Honor of Harold Hotelling (pp. 198 - 202). Stanford University Press.
data(d_e, package = "Analitica")
DSCFTest(Sueldo_actual ~ labor, data = d_e)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.