| GabrielTest | R Documentation |
A modification of Tukey's test for use with moderately unequal sample sizes.
GabrielTest(modelo, comparar = NULL, alpha = 0.05)
modelo |
An |
comparar |
Character vector with the name(s) of the factor(s) to compare:
- One name: main effect (e.g., "treatment" or "A")
- Several names: interaction (e.g., |
alpha |
Significance level (default 0.05). |
Advantages: - More powerful than Tukey for unequal group sizes. - Controls error rates effectively with moderate imbalance.
Disadvantages: - Can be anti-conservative with large differences in group sizes. - Less common in standard statistical software.
An object of class "gabriel" and "comparaciones" containing:
Resultados: a data.frame with columns Comparacion, Diferencia, SE, t_value,
p_value (unadjusted), p_ajustada (gabriel), Valor_Critico (critical difference), and Significancia.
Promedios: a named vector of group means as defined by comparar.
Orden_Medias: group names ordered from highest to lowest mean.
Metodo: "Gabriel t-test".
Termino: the term being compared (e.g., "A", "B", or "A:B").
MSerror, df_error, N: useful for plots with error bars.
Hochberg, Y., & Tamhane, A. C. (1987). Multiple Comparison Procedures.
# DCA
data(d_e, package = "Analitica")
mod1 <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
resultado <- GabrielTest(mod1)
summary(resultado)
plot(resultado)
# RCBD
mod2 <- aov(Sueldo_actual ~ as.factor(labor) + Sexo, data = d_e)
res <- GabrielTest(mod2, comparar = "as.factor(labor)")
summary(res); plot(res)
# Factorial
mod3 <- aov(Sueldo_actual ~ as.factor(labor) * Sexo, data = d_e)
resAB <- GabrielTest(mod3, comparar = c("as.factor(labor)","Sexo")) # celdas A:B
summary(resAB, n = Inf); plot(resAB, horizontal = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.