Nothing
#' Gabriel’s Post Hoc Test for Multiple Comparisons
#'
#' A modification of Tukey's test for use with moderately unequal sample sizes.
#'
#' Advantages:
#' - More powerful than Tukey for unequal group sizes.
#' - Controls error rates effectively with moderate imbalance.
#'
#' Disadvantages:
#' - Can be anti-conservative with large differences in group sizes.
#' - Less common in standard statistical software.
#'
#' @param modelo An object of class \code{aov} or \code{lm}.
#' @param alpha Significance level (default is 0.05).
#'
#' @return An object of class \code{"gabriel"} and \code{"comparaciones"}, containing:
#' \itemize{
#' \item \code{Resultados}: Data frame with comparisons, mean differences, adjusted critical value, p-value, and significance level.
#' \item \code{Promedios}: Named numeric vector of group means.
#' \item \code{Orden_Medias}: Vector of group names ordered from highest to lowest mean.
#' \item \code{Metodo}: Name of the method used ("Gabriel").
#' }
#'
#' @references Hochberg, Y., & Tamhane, A. C. (1987). Multiple Comparison Procedures.
#'
#'
#' @examples
#' data(d_e, package = "Analitica")
#' mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
#' resultado <- GabrielTest(mod)
#' summary(resultado)
#' plot(resultado)
#'
#'
#' @export
#' @importFrom stats qtukey ptukey deviance
#' @importFrom utils combn
GabrielTest <- function(modelo, alpha = 0.05) {
factor_name <- names(modelo$xlevels)[1]
grupos <- modelo$model[[factor_name]]
respuesta <- modelo$model[[1]]
medias <- tapply(respuesta, grupos, mean)
n <- tapply(respuesta, grupos, length)
nombres_grupos <- names(medias)
df_error <- modelo$df.residual
MSerror <- deviance(modelo) / df_error
ng <- length(medias)
comparaciones <- combn(nombres_grupos, 2, simplify = FALSE)
resultados <- data.frame(
Comparacion = character(),
Diferencia = numeric(),
Valor_Critico = numeric(),
p_value = numeric(),
Significancia = character(),
stringsAsFactors = FALSE
)
for (par in comparaciones) {
g1 <- par[1]
g2 <- par[2]
dif <- abs(medias[g1] - medias[g2])
# Gabriel SE adjustment
ni <- n[g1]
nj <- n[g2]
N <- ni + nj
MSE <- MSerror
se_ij <- sqrt(MSE * (2 / N))
# Critical value from studentized range
q_crit <- qtukey(1 - alpha, ng, df_error)
valor_critico <- q_crit * se_ij / sqrt(2)
q_obs <- dif * sqrt(2) / se_ij
p_val <- 1 - ptukey(q_obs, ng, df_error)
sig <- ifelse(p_val < 0.001, "***",
ifelse(p_val < 0.01, "**",
ifelse(p_val < 0.05, "*", "ns")))
resultados <- rbind(resultados, data.frame(
Comparacion = paste(sort(c(g1, g2)), collapse = " - "),
Diferencia = round(dif, 4),
Valor_Critico = round(valor_critico, 4),
p_value = round(p_val, 4),
Significancia = sig
))
}
out <- list(
Resultados = resultados,
Promedios = medias,
Orden_Medias = names(sort(medias, decreasing = TRUE)),
Metodo = "Gabriel"
)
class(out) <- c("comparaciones", "gabriel")
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.