Description Usage Arguments Value Author(s) References See Also Examples
View source: R/spatial.mixture.R
Fits the spatial mixture model of Hartvig and Jensen (2000)
1 2 | N2G.Spatial.Mixture(data, par.start = c(4, 2, 4, 2, 0.9, 0.05),
ksize, ktype = c("2D", "3D"), mask = NULL)
|
data |
The dataset (usually a vector) |
par.start |
Starting values for N2G model |
ksize |
Kernel size (see paper) |
ktype |
Format of kernel "2D" or "3D" |
mask |
Mask for dataset. |
p.map = a1, par = fit$par, lims = fit$lims Returns a list with following components
p.map |
Posterior Probability Map of activation |
par |
Fitted parameters of the underlying N2G model |
lims |
Normal component interval for fitted model |
J. L. Marchini
Hartvig and Jensen (2000) Spatial Mixture Modelling of fMRI Data
N2G.Class.Probability
, N2G.Likelihood.Ratio
,
N2G.Density
, N2G.Likelihood
, N2G.Transform
,
N2G.Fit
, N2G
,
N2G.Inverse
, N2G.Region
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## simulate image
d <- c(100, 100, 1)
y <- array(0, dim = d)
m <- y
m[, , ] <- 1
z.init <- 2 * m
z.init[20:40, 20:40, 1] <- 1
z.init[50:70, 50:70, 1] <- 3
y[z.init == 1] <- -rgamma(sum(z.init == 1), 4, 1)
y[z.init == 2] <- rnorm(sum(z.init == 2))
y[z.init == 3] <- rgamma(sum(z.init == 3), 4, 1)
mask <- 1 * (y < 1000)
## fit spatial mixture model
ans <- N2G.Spatial.Mixture(y, par.start = c(4, 2, 4, 2, 0.9, 0.05),
ksize = 3, ktype = "2D", mask = m)
## plot original image, standard mixture model estimate and spatial mixture
## model estimate
par(mfrow = c(1, 3))
image(y[, , 1])
image(y[, , 1] > ans$lims[1]) ## this line plots the results of a Non-Spatial Mixture Model
image(ans$p.map[, , 1] > 0.5) ## this line plots the results of the Spatial Mixture Model
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.