be2x2: Bioequivalence test of a 2x2 study

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/be2x2.R

Description

It performs conventional bioequivalence test for 2x2 study. Input is a file. Basic assumption is that the variable is distributed as a log-normal distribution. This is SAS PROC GLM style. If you want PROC MIXED style, use nlme::lme.

Usage

1
be2x2(Data, Columns = c("AUClast", "Cmax", "Tmax"), rtfName="")

Arguments

Data

A data.frame or a file name. This should have at least the following columns and variable column(s) to be tested. AUC and Cmax should be all positive values.

  
 GRP : Group or Sequence, 'RT' or 'TR'
 PRD : Period, 1 or 2
 SUBJ : Subject ID
 TRT : Treatment or Drug, 'R' or 'T'
Columns

Column names of variables to be tested. This is usaully c("AUClast", "Cmax", "Tmax") or c("AUClast", "AUCinf", "Cmax", "Tmax")

rtfName

Output filename of rich text format(rtf)

Details

It performs bioequivalency tests for several variables of a 2x2 study in a data file. If you specify output filename in rtfName, the output will be saved in the file.

Value

Returns text output of equivalence test result.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

test2x2, plot2x2

Examples

1
  be2x2(NCAResult4BE, c("AUClast", "Cmax", "Tmax"))

Example output

Loading required package: rtf
dev.new(): using pdf(file="Rplots1.pdf")
dev.new(): using pdf(file="Rplots2.pdf")
dev.new(): using pdf(file="Rplots3.pdf")
dev.new(): using pdf(file="Rplots4.pdf")
dev.new(): using pdf(file="Rplots5.pdf")
$AUClast
$AUClast$`Analysis of Variance (log scale)`
               Df Sum Sq  Mean Sq F value    Pr(>F)    
SUBJECT        32 2.8755 0.089859  3.1839 0.0008743 ***
GROUP           1 0.1025 0.102461  1.1454 0.2927732    
SUBJECT(GROUP) 31 2.7730 0.089453  3.1695 0.0009544 ***
PERIOD          1 0.0000 0.000030  0.0011 0.9740824    
DRUG            1 0.0364 0.036435  1.2910 0.2645764    
ERROR          31 0.8749 0.028223                      
TOTAL          65 3.7868                               
---
Signif. codes:  0***0.001**0.01*0.05.’ 0.1 ‘ ’ 1

$AUClast$`Between and Within Subject Variability`
                                Between Subject Within Subject
Variance Estimate                    0.03061507     0.02822265
Coefficient of Variation, CV(%)     17.63193968    16.91883011

$AUClast$`Least Square Means (geometric mean)`
                Reference Drug Test Drug
Geometric Means       5092.098  4858.245

$AUClast$`90% Confidence Interval of Geometric Mean Ratio (T/R)`
                 Lower Limit Point Estimate Upper Limit
90% CI for Ratio    0.889436      0.9540753    1.023412

$AUClast$`Sample Size`
                      True Ratio=1 True Ratio=Point Estimate
80% Power Sample Size            6                         7


$Cmax
$Cmax$`Analysis of Variance (log scale)`
               Df Sum Sq  Mean Sq F value  Pr(>F)  
SUBJECT        32 2.8615 0.089422  2.2376 0.01367 *
GROUP           1 0.0001 0.000097  0.0011 0.97430  
SUBJECT(GROUP) 31 2.8614 0.092303  2.3097 0.01132 *
PERIOD          1 0.0047 0.004717  0.1180 0.73348  
DRUG            1 0.0068 0.006838  0.1711 0.68198  
ERROR          31 1.2389 0.039963                  
TOTAL          65 4.1123                           
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

$Cmax$`Between and Within Subject Variability`
                                Between Subject Within Subject
Variance Estimate                    0.02616997      0.0399631
Coefficient of Variation, CV(%)     16.28355371     20.1921690

$Cmax$`Least Square Means (geometric mean)`
                Reference Drug Test Drug
Geometric Means       825.5206  808.8778

$Cmax$`90% Confidence Interval of Geometric Mean Ratio (T/R)`
                 Lower Limit Point Estimate Upper Limit
90% CI for Ratio   0.9013625      0.9798396    1.065149

$Cmax$`Sample Size`
                      True Ratio=1 True Ratio=Point Estimate
80% Power Sample Size            8                         8


$Tmax
$Tmax$`Wilcoxon Signed-Rank Test`
  p-value 
0.2326894 

$Tmax$`Hodges-Lehmann Estimate`
                           Lower Limit Point Estimate Upper Limit
90% Confidence Interval       -0.33000       -0.03500      0.1050
90% Confidence Interval(%)    74.37661       97.28237    108.1529

BE documentation built on Oct. 23, 2020, 8:33 p.m.