View source: R/bma_posterior.R
bma_posterior | R Documentation |
The 'bma_posterior' function samples posterior distributions of graph
parameters (e.g., partial correlations or precision matrices) based on the
graph structures sampled during a Bayesian graph search performed by
ggm_search
.
bma_posterior(object, param = "pcor", iter = 5000, progress = TRUE)
object |
A ggm_search object |
param |
Compute BMA on either partial correlations "pcor" (default) or on precision matrix "Theta". |
iter |
Number of samples to be drawn, defaults to 5,000 |
progress |
Show progress bar, defaults to TRUE |
This function incorporates uncertainty in both graph structure and parameter estimation, providing Bayesian Model Averaged (BMA) parameter estimates.
Use 'bma_posterior' when detailed posterior inference on graph parameters is needed, or to refine results obtained from 'ggm_search'.
A list containing posterior samples and the Bayesian Model Averaged parameter estimates.
ggm_search
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.