Nothing
## File Name: BIFIE.correl.R
## File Version: 0.471
#######################################################################
# Correlations and covariances
BIFIE.correl <- function( BIFIEobj, vars, group=NULL, group_values=NULL, se=TRUE ){
#****
s1 <- Sys.time()
cl19 <- match.call()
bifieobj <- BIFIEobj
if (bifieobj$cdata){
varnames <- unique( c( vars, group, "one") )
bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames )
}
FF <- Nimp <- bifieobj$Nimp
N <- bifieobj$N
dat1 <- bifieobj$dat1
wgt <- bifieobj$wgt
wgtrep <- bifieobj$wgtrep
varnames <- bifieobj$varnames
RR <- bifieobj$RR
datalistM <- bifieobj$datalistM
fayfac <- bifieobj$fayfac
if (RR==1){ RR <- 0 }
if ( ! se ){
wgtrep <- matrix( wgt, ncol=1 )
RR <- 0
}
vars_index <- unlist( sapply( vars, FUN=function(vv){
which( varnames==vv ) }, simplify=TRUE) )
# vars values
VV <- length(vars)
wgt_ <- matrix( wgt, ncol=1 )
if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE }
cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" ))
if (nogroup){
group <- "one"
group_values <- c(1)
}
#@@@@***
group_index <- match( group, varnames )
#@@@@***
if ( is.null(group_values ) ){
t1 <- bifie_table( datalistM[, group_index ] )
group_values <- sort( as.numeric( paste( names(t1) ) ))
}
#@@@@***
res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values )
res00$datalistM -> datalistM
res00$group_index -> group_index
res00$GR -> GR
res00$group_values -> group_values
res00$group -> group
#@@@@***
#**************************************************************************#
# Rcpp call
res <- bifie_correl( datalistM, wgt_, as.matrix(wgtrep), vars_index -1, fayfac,
Nimp, group_index - 1, group_values)
GG <- length(group_values)
itempair_index <- res$itempair_index + 1
ZZ <- nrow(itempair_index )
dfr <- data.frame( "var1"=rep( vars[ itempair_index[,1] ], each=GG ),
"var2"=rep( vars[ itempair_index[,2] ], each=GG )
)
if (! nogroup){
dfr$groupvar <- group
dfr$groupval <- rep( group_values, ZZ )
}
dfr$Ncases <- rep( rowMeans( res$ncases1M ), ZZ )
dfr$Nweight <- rep( rowMeans( res$sumwgt1M ), ZZ )
dfr$cor <- res$cor1$pars
dfr$cor_SE <- res$cor1$pars_se
dfr$t <- round( dfr$cor / dfr$cor_SE, 2 )
dfr$df <- rubin_calc_df( res$cor1, Nimp )
# dfr$p <- pnorm( - abs( dfr$t ) ) * 2
dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2
dfr$cor_fmi <- res$cor1$pars_fmi
dfr$cor_VarMI <- res$cor1$pars_varBetween
dfr$cor_VarRep <- res$cor1$pars_varWithin
#******************
# NMI
if ( BIFIEobj$NMI ){
res1a <- res1 <- BIFIE_NMI_inference_parameters( parsM=res$cor1M, parsrepM=res$cor1repM,
fayfac=fayfac, RR=RR, Nimp=Nimp,
Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE )
dfr$cor_fmi <- dfr$cor_VarMI <- NULL
dfr$cor <- res1$pars
dfr$cor_SE <- res1$pars_se
dfr$t <- round( dfr$cor / dfr$cor_SE, 2 )
dfr$df <- res1$df
dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2
dfr$cor_fmi <- res1$pars_fmi
dfr$cor_fmi_St1 <- res1$pars_fmiB
dfr$cor_fmi_St2 <- res1$pars_fmiW
dfr$cor_VarMI_St1 <- res1$pars_varBetween1
dfr$cor_VarMI_St2 <- res1$pars_varBetween2
dfr$cor_VarRep <- res1$pars_varWithin
}
dfr <- clean_summary_table( dfr, RR, se, Nimp )
# i1 <- match( dfr$var1, vars )
# i2 <- match( dfr$var2, vars )
dfr <- dfr[ dfr$var1 !=dfr$var2, ]
#@@@@***
# multiple groupings
dfr <- BIFIE_table_multiple_groupings( dfr, res00 )
#@@@@***
dfr.cor <- dfr
dfr <- data.frame( "var1"=rep( vars[ itempair_index[,1] ], each=GG ),
"var2"=rep( vars[ itempair_index[,2] ], each=GG )
)
if (! nogroup){
dfr$groupvar <- group
dfr$groupval <- rep( group_values, ZZ )
}
dfr$Ncases <- rep( rowMeans( res$ncases1M ), ZZ )
dfr$Nweight <- rep( rowMeans( res$sumwgt1M ), ZZ )
dfr$cov <- res$cov1$pars
dfr$cov_SE <- res$cov1$pars_se
dfr$cov_df <- rubin_calc_df( res$cov1, Nimp )
dfr$cov_fmi <- res$cov1$pars_fmi
dfr$cov_VarMI <- res$cov1$pars_varBetween
dfr$cov_VarRep <- res$cov1$pars_varWithin
if ( BIFIEobj$NMI ){
res1b <- res1 <- BIFIE_NMI_inference_parameters( parsM=res$cov1M, parsrepM=res$cov1repM,
fayfac=fayfac, RR=RR, Nimp=Nimp,
Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE )
dfr$cov_fmi <- dfr$cov_VarMI <- NULL
dfr$cov <- res1$pars
dfr$cov_SE <- res1$pars_se
dfr$t <- round( dfr$cov / dfr$cov_SE, 2 )
dfr$df <- res1$df
dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2
dfr$cov_fmi <- res1$pars_fmi
dfr$cov_fmi_St1 <- res1$pars_fmiB
dfr$cov_fmi_St2 <- res1$pars_fmiW
dfr$cov_VarMI_St1 <- res1$pars_varBetween1
dfr$cov_VarMI_St2 <- res1$pars_varBetween2
dfr$cov_VarRep <- res1$pars_varWithin
}
dfr <- clean_summary_table( dfr, RR, se, Nimp )
#@@@@***
# multiple groupings
dfr <- BIFIE_table_multiple_groupings( dfr, res00 )
#@@@@***
dfr.cov <- dfr
#*****
# construct list of correlation matrices
ml <- as.list(1:GG)
names(ml) <- paste0(group,group_values)
#*** correlation matrix
ml0 <- ml
cl <- res$cor1_matrix
for (gg in 1:GG){
ml0[[gg]] <- cl[, 1:VV + (gg-1 )*VV ]
colnames(ml0[[gg]]) <- rownames(ml0[[gg]]) <- vars
}
cor_matrix <- ml0
#*** covariance matrix
ml0 <- ml
cl <- res$cov1_matrix
for (gg in 1:GG){
ml0[[gg]] <- cl[, 1:VV + (gg-1 )*VV ]
colnames(ml0[[gg]]) <- rownames(ml0[[gg]]) <- vars
}
cov_matrix <- ml0
# create vector of parameter names
nogroupL <- rep( nogroup, nrow(dfr) )
parnames <- paste0( dfr$var1, "_", dfr$var2,
ifelse( ! nogroupL, paste0("_", dfr$groupvar ), "" ),
ifelse( ! nogroupL, paste0( "_", dfr$groupval ), "" )
)
#*************************** OUTPUT ***************************************
s2 <- Sys.time()
timediff <- c( s1, s2 ) #, paste(s2-s1 ) )
res1 <- list( "stat.cor"=dfr.cor, "stat.cov"=dfr.cov,
"output"=res, "cor_matrix"=cor_matrix,
"cov_matrix"=cov_matrix,
"timediff"=timediff,
"N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac,
"NMI"=BIFIEobj$NMI, "Nimp_NMI"=BIFIEobj$Nimp_NMI,
"itempair_index"=itempair_index, "GG"=GG,
"parnames"=parnames, "CALL"=cl19)
if ( BIFIEobj$NMI ){
res$output_cor <- res1a
res$output_cov <- res1b
}
class(res1) <- "BIFIE.correl"
return(res1)
}
###################################################################################
####################################################################################
# summary for BIFIE.correl function
summary.BIFIE.correl <- function( object, digits=4, ... )
{
BIFIE.summary(object)
cat("Statistical Inference for Correlations \n")
obji <- object$stat.cor
print_object_summary( obji, digits=digits )
cat("\nCorrelation Matrices \n\n")
obji <- object$cor_matrix
GG <- object$GG
for (gg in 1:GG){
obji[[gg]] <- round( obji[[gg]], digits=digits)
}
print(obji)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.