Nothing
## File Name: BIFIE.univar.R
## File Version: 1.844
#--- univariate statistics
BIFIE.univar <- function( BIFIEobj, vars, group=NULL, group_values=NULL, se=TRUE ){
#****
s1 <- Sys.time()
cl <- match.call()
bifieobj <- BIFIEobj
if (bifieobj$cdata){
varnames <- unique( c( vars, group, "one") )
bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames )
}
FF <- Nimp <- bifieobj$Nimp
N <- bifieobj$N
dat1 <- bifieobj$dat1
wgt <- bifieobj$wgt
wgtrep <- bifieobj$wgtrep
varnames <- bifieobj$varnames
RR <- bifieobj$RR
datalistM <- bifieobj$datalistM
fayfac <- bifieobj$fayfac
if (RR==1){ RR <- 0 }
if ( ! se ){
wgtrep <- matrix( wgt, ncol=1 )
RR <- 0
}
vars_index <- unlist( sapply( vars, FUN=function(vv){
which( varnames==vv ) } ) )
wgt_ <- matrix( wgt, ncol=1 )
if ( is.null( group) ){
nogroup <- TRUE } else {
nogroup <- FALSE
}
cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" ))
if (nogroup){
group <- "one"
group_values <- c(1)
}
#@@@@***
group_index <- match( group, varnames )
#@@@@***
if ( is.null(group_values ) ){
t1 <- bifie_table( datalistM[, group_index ] )
group_values <- sort( as.numeric( paste( names(t1) ) ))
}
#@@@@***
res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values )
res00$datalistM -> datalistM
res00$group_index -> group_index
res00$GR -> GR
res00$group_values -> group_values
res00$group -> group
#@@@@***
#****************** no grouping variable **********************************#
if ( nogroup ){
res <- univar_multiple_V2group( datalistM, wgt_, wgtrep, vars_index-1,
fayfac, Nimp, group_index-1, group_values )
GG <- length(group_values)
VV <- length(vars)
dfr <- data.frame( "var"=rep(vars,each=GG),
"Nweight"=rowMeans(res$sumweightM),
"Ncases"=rowMeans( res$ncasesM),
"M"=res$mean1, "M_SE"=res$mean1_se )
dfr$M_df <- round( (Nimp-1)*( 1 + (Nimp*res$mean1_varWithin )/ ( Nimp+1) / res$mean1_varBetween )^2, 2 )
vv <- "M_df"
dfr[,vv] <- ifelse( dfr[,vv] > 1000, Inf, dfr[,vv] )
dfr$M_t <- dfr$M / dfr$M_SE
dfr$M_p <- 2* stats::pt( - abs( dfr$M_t), df=dfr$M_df )
dfr0 <- data.frame( "M_fmi"=res$mean1_fmi,
"M_VarMI"=res$mean1_varBetween, "M_VarRep"=res$mean1_varWithin,
"SD"=res$sd1, "SD_SE"=res$sd1_se )
dfr <- cbind( dfr, dfr0 )
dfr$SD_df <- round( (Nimp-1)*( 1 + (Nimp*res$sd1_varWithin )/ ( Nimp+1) / res$sd1_varBetween )^2, 2 )
vv <- "SD_df"
dfr[,vv] <- ifelse( dfr[,vv] > 1000, Inf, dfr[,vv] )
dfr$SD_t <- dfr$M / dfr$SD_SE
dfr$SD_p <- 2*stats::pt( - abs( dfr$SD_t), df=dfr$SD_df )
dfr0 <- data.frame( "SD_fmi"=res$sd1_fmi, "SD_VarMI"=res$sd1_varBetween, "SD_VarRep"=res$sd1_varWithin
)
if (BIFIEobj$NMI ){
# M
res1 <- BIFIE_NMI_inference_parameters( parsM=res$mean1M, parsrepM=res$mean1repM,
fayfac=fayfac, RR=RR, Nimp=Nimp,
Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE )
dfr$M <- res1$pars
dfr$M_SE <- res1$pars_se
dfr$M_df <- res1$df
dfr$M_t <- res1$pars / res1$pars_se
dfr$M_p <- 2*stats::pt( - abs( dfr$M_t), df=res1$df )
dfr$M_fmi <- res1$pars_fmi
dfr$M_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2
dfr$M_VarRep <- res1$pars_varWithin
# SD
res1 <- BIFIE_NMI_inference_parameters( parsM=res$sd1M, parsrepM=res$sd1repM,
fayfac=fayfac, RR=RR, Nimp=Nimp,
Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE )
dfr$SD <- res1$pars
dfr$SD_SE <- res1$pars_se
dfr$SD_df <- res1$df
dfr$SD_t <- res1$pars / res1$pars_se
dfr$SD_p <- 2*stats::pt( - abs( dfr$SD_t), df=res1$df )
dfr$SD_fmi <- res1$pars_fmi
dfr$SD_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2
dfr$SD_VarRep <- res1$pars_varWithin
}
}
#****************** with grouping variable ********************************#
if ( ! nogroup ){
res <- univar_multiple_V2group( datalistM, wgt_, wgtrep, vars_index - 1, fayfac, Nimp,
group_index - 1, group_values )
GG <- length(group_values)
VV <- length(vars)
dfr <- data.frame( "var"=rep(vars,each=GG),
"groupvar"=group,
"groupval"=rep(group_values, VV ),
"Nweight"=rep( rowMeans(res$sumweightM), VV ),
"Ncases"=res$ncases,
"M"=res$mean1, "M_SE"=res$mean1_se )
dfr$M_df <- round( (Nimp-1)*( 1 + (Nimp*res$mean1_varWithin )/ ( Nimp+1) / res$mean1_varBetween )^2, 2 )
vv <- "M_df"
dfr[,vv] <- ifelse( dfr[,vv] > 1000, Inf, dfr[,vv] )
dfr$M_t <- dfr$M / dfr$M_SE
dfr$M_p <- 2*stats::pt( - abs( dfr$M_t), df=dfr$M_df )
dfr <- data.frame( dfr, "M_fmi"=res$mean1_fmi, "M_VarMI"=res$mean1_varBetween, "M_VarRep"=res$mean1_varWithin,
"SD"=res$sd1, "SD_SE"=res$sd1_se )
dfr$SD_df <- round( (Nimp-1)*( 1 + (Nimp*res$sd1_varWithin )/ ( Nimp+1) / res$sd1_varBetween )^2, 2 )
vv <- "SD_df"
dfr[,vv] <- ifelse( dfr[,vv] > 1000, Inf, dfr[,vv] )
dfr$SD_t <- dfr$M / dfr$SD_SE
dfr$SD_p <- 2*stats::pt( - abs( dfr$SD_t), df=dfr$SD_df )
dfr <- data.frame( dfr,"SD_fmi"=res$sd1_fmi, "SD_VarMI"=res$sd1_varBetween, "SD_VarRep"=res$sd1_varWithin
)
if (BIFIEobj$NMI ){
# M
res1 <- BIFIE_NMI_inference_parameters( parsM=res$mean1M, parsrepM=res$mean1repM,
fayfac=fayfac, RR=RR, Nimp=Nimp,
Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE )
dfr$M <- res1$pars
dfr$M_SE <- res1$pars_se
dfr$M_df <- res1$df
dfr$M_t <- res1$pars / res1$pars_se
dfr$M_p <- 2*stats::pt( - abs( dfr$M_t), df=res1$df )
dfr$M_fmi <- res1$pars_fmi
dfr$M_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2
dfr$M_VarRep <- res1$pars_varWithin
# SD
res1 <- BIFIE_NMI_inference_parameters( parsM=res$sd1M, parsrepM=res$sd1repM,
fayfac=fayfac, RR=RR, Nimp=Nimp,
Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE )
dfr$SD <- res1$pars
dfr$SD_SE <- res1$pars_se
dfr$SD_df <- res1$df
dfr$SD_t <- res1$pars / res1$pars_se
dfr$SD_p <- 2*pt( - abs( dfr$SD_t), df=res1$df )
dfr$SD_fmi <- res1$pars_fmi
dfr$SD_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2
dfr$SD_VarRep <- res1$pars_varWithin
}
}
if ( ( ! se ) & ( RR==0 ) ){
dfr$M_SE <- dfr$M_fmi <- dfr$M_VarMI <- dfr$M_VarRep <- dfr$M_t <- dfr$M_df <- dfr$M_p <- NULL
dfr$SD_SE <- dfr$SD_fmi <- dfr$SD_VarMI <- dfr$SD_VarRep <-
dfr$SD_t <- dfr$SD_df <- dfr$SD_p <-NULL
}
if ( Nimp==1 ){
dfr$M_fmi <- dfr$M_VarMI <- NULL
dfr$SD_fmi <- dfr$SD_VarMI <- NULL
}
#****
# statistics for mean and SD
v1 <- c("var", "groupvar", "groupval", "Nweight", "Ncases" )
v1 <- intersect( v1, colnames(dfr) )
cdfr <- colnames(dfr)
stat_M <- dfr[, c( v1, cdfr[ substring( cdfr, 1,1)=="M" ] ) ]
stat_SD <- dfr[, c( v1, cdfr[ substring( cdfr, 1,2)=="SD" ] ) ]
# create vector of parameter names
nogroupL <- rep( nogroup, nrow(dfr) )
parnames <- paste0( dfr$var,
ifelse( ! nogroupL, paste0( "_", dfr$groupvar, "_" ), "" ),
ifelse( ! nogroupL, dfr$groupval, "" ) )
#@@@@***
# multiple groupings
dfr <- BIFIE_table_multiple_groupings( dfr, res00 )
#@@@@***
stat_M <- BIFIE_table_multiple_groupings( stat_M, res00 )
stat_SD <- BIFIE_table_multiple_groupings( stat_SD, res00 )
#*************************** OUTPUT ***************************************
s2 <- Sys.time()
timediff <- c( s1, s2 ) #, paste(s2-s1 ) )
res1 <- list( stat=dfr, stat_M=stat_M, stat_SD=stat_SD,
output=res, timediff=timediff,
N=N, Nimp=Nimp, RR=RR, fayfac=fayfac, parnames=parnames,
NMI=BIFIEobj$NMI, Nimp_NMI=BIFIEobj$Nimp_NMI, se=se,
GG=GG, VV=VV, vars=vars, group=group, CALL=cl)
class(res1) <- "BIFIE.univar"
return(res1)
}
# summary for BIFIE.univar function
summary.BIFIE.univar <- function( object, digits=3, ... )
{
BIFIE.summary(object)
cat("Univariate Statistics | Means\n")
obji <- object$stat_M
print_object_summary( obji, digits=digits )
cat("\nUnivariate Statistics | Standard Deviations\n")
obji <- object$stat_SD
print_object_summary( obji, digits=digits )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.