Nothing
#' Boundary line model determination using quantile regression
#'
#' This function fits a boundary model to the upper bounds of a scatter plot of
#' \code{x} and \code{y} by estimating the conditional quantile (0-1) of the
#' response variable, \code{y}, across values of the predictor variables, \code{x}.
#' This is achieved using optimization procedure and hence requires some starting
#' guess parameters of a proposed model.
#'
#' @param x A numeric vector of values for the independent variable.
#' @param y A numeric vector of values for the response variable.
#' @param model Selects the functional form of the boundary line. It includes
#' \code{"blm"} for linear model, \code{"lp"} for linear plateau model, \code{"mit"}
#' for the Mitscherlich model, \code{"schmidt"} for the Schmidt model,
#' \code{"logistic"} for logistic model, \code{"logisticND"} for logistic model
#' proposed by Nelder (1961), \code{"inv-logistic"} for the inverse logistic
#' model, \code{"double-logistic"} for the double logistic model, \code{"qd"}
#' for quadratic model and the \code{"trapezium"} for the trapezium model.For custom
#' models, set \code{model = "other"}.
#' @param equation A custom model function writen in the form of an R function. Applies
#' only when argument \code{model="other"}, else it is \code{NULL}.
#' @param tau The quantile value (0- 1) that represents the boundary
#' (\code{default is tau = 0.95}).
#' @param start A numeric vector of initial starting values for optimization
#' in fitting the boundary model. Its length and arrangement depend on the
#' suggested model: \itemize{
#' \item For the \code{"blm"} model, it is a vector of length 2 arranged as intercept
#' and slope.
#' \item For the \code{"lp"} model, it is a vector of length 3 arranged as intercept,
#' slope and maximum response.
#' \item For the \code{"logistic"} and \code{"inv-logistic"} models, it is a
#' vector of length 3 arranged as the scaling parameter, shape parameter and maximum
#' response.
#' \item For the \code{"logisticND"} model proposed by Nelder (1961), it is a
#' vector of length 3 arranged as the scaling parameter, shape parameter and maximum
#' response.
#' \item For the \code{"double-logistic"} model, it is a vector of length 6 arranged
#' as the scaling parameter one, shape parameter one, maximum response, maximum
#' response, scaling parameter two and shape parameter two.
#' \item For the \code{"qd"} model, it is a vector of length 3 arranged as constant,
#' linear coefficient and quadratic coefficient.
#' \item For the \code{"trapezium"} model, it is a vector of length 3 arranged as
#' intercept one, slope one, maximum response, intercept two and slope two.
#' \item For the \code{"mit"} model, it is a vector of length 3 arranged as the
#' intercept, shape parameter and the maximum response.
#' \item For the \code{"schmidt"} model, it is a vector of length 3 arranged as scaling
#' parameter, shape parameter (x-value at maximum response ) and maximum response.}
#' @param plot If \code{TRUE}, a plot is part of the output. If \code{FALSE}, plot
#' is not part of output (default is \code{TRUE}).
#' @param xmin Numeric value that describes the minimum \code{x} value to which the
#' boundary line is to be fitted (default is \code{min(x)}).
#' @param xmax A numeric value that describes the maximum \code{x} value to which the
#' boundary line is to be fitted (default is \code{max(x)}). \code{xmin} and
#' \code{xmax} determine the subset of the data set used to fit boundary model.
#' @param line_smooth Parameter that describes the smoothness of the boundary line.
#' (default is 1000). The higher the value, the smoother the line.
#' @param lwd Determines the thickness of the boundary line on the plot (default is 1).
#' @param line_col Selects the color of the boundary line.
#' @param optim.method Describes the method used to optimize the model as in the
#' \code{optim()} function. The methods include \code{"Nelder-Mead"}, \code{"BFGS"},
#' \code{"CG"}, \code{"L-BFGS-B"}, \code{"SANN"} and \code{"Brent"}.
#' @param ... Additional graphical parameters.
#' @returns A list of length 5 consisting of the fitted model, equation form, parameters
#' of the boundary line, the weighted residue sum square. Additionally, a graphical
#' representation of the boundary line on the scatter plot is produced.
#'
#' @details
#' Some inbuilt models are available for the \code{blqr()} function. The suggest model
#' forms are as follows: \enumerate{
#' \item Linear model (\code{"blm"})
#' \deqn{y=\beta_1 + \beta_2x}
#' where \eqn{\beta_1} is the intercept and \eqn{\beta_2} is the slope.
#'
#' \item Linear plateau model (\code{"lp"})
#' \deqn{y= {\rm min}(\beta_1+\beta_2x, \beta_0)}
#' where \eqn{\beta_1} is the intercept , \eqn{\beta_2} is the slope and \eqn{\beta_0}
#' is the maximum response.
#'
#' \item The logistic (\code{"logistic"}) and inverse logistic (\code{"inv-logistic"})
#' models
#' \deqn{ y= \frac{\beta_0}{1+e^{\beta_2(\beta_1-x)}}}
#' \deqn{ y= \beta_0 - \frac{\beta_0}{1+e^{\beta_2(\beta_1-x)}}}
#' where \eqn{\beta_1} is a scaling parameter , \eqn{\beta_2} is a shape parameter
#' and \eqn{\beta_0} is the maximum response.
#'
#' \item Logistic model (\code{"logisticND"}) (Nelder (1961))
#' \deqn{ y= \frac{\beta_0}{1+(\beta_1 \times e^{-\beta_2x})}}
#' where \eqn{\beta_1} is a scaling parameter, \eqn{\beta_2} is a shape
#' parameter and \eqn{\beta_0} is the maximum response.
#'
#' \item Double logistic model (\code{"double-logistic"})
#' \deqn{ y= \frac{\beta_{0,1}}{1+e^{\beta_2(\beta_1-x)}} -
#' \frac{\beta_{0,2}}{1+e^{\beta_4(\beta_3-x)}}}
#' where \eqn{\beta_1} is a scaling parameter one, \eqn{\beta_2} is a shape parameter
#' one, \eqn{\beta_{0,1}} and \eqn{\beta_{0,2}} are the maximum response ,
#' \eqn{\beta_3} is a scaling parameter two and \eqn{\beta_4} is a shape parameter two.
#'
#' \item Quadratic model (\code{"qd"})
#' \deqn{y=\beta_1 + \beta_2x + \beta_3x^2}
#' where \eqn{\beta_1} is a constant, \eqn{\beta_2} is a linear coefficient
#' and \eqn{\beta_3} is the quadratic coefficient.
#'
#' \item Trapezium model (\code{"trapezium"})
#' \deqn{y={\rm min}(\beta_1+\beta_2x, \beta_0, \beta_3 + \beta_4x)}
#' where \eqn{\beta_1} is the intercept one, \eqn{\beta_2} is the slope one,
#' \eqn{\beta_0} is the maximum response, \eqn{\beta_3} is the intercept two
#' and \eqn{\beta_3} is the slope two.
#'
#' \item Mitscherlich model (\code{"mit"})
#' \deqn{y= \beta_0 - \beta_1*\beta_2^x}
#' where \eqn{\beta_1} is the intercept, \eqn{\beta_2} is a shape parameter
#' and \eqn{\beta_0} is the maximum response.
#'
#' \item Schmidt model (\code{"schmidt"})
#' \deqn{y= \beta_0 + \beta_1(x-\beta_2)^2}
#' where \eqn{\beta_1} is ascaling parameter, \eqn{\beta_2} is a
#' shape parameter (x-value at maximum response ) and \eqn{\beta_0} is the
#' maximum response .
#'
#' \item Custom model ("other")
#' This option allows you to create your own model form using the function
#' \code{function()}. The custom model should be assigned to the argument
#' \code{equation}. Note that the parameters for the custom model should be
#' \code{a} and \code{b} for a two parameter model; \code{a}, \code{b} and \code{c}
#' for a three parameter model; \code{a}, \code{b}, \code{c} and \code{d} for a
#' four parameter model and so on.
#' }
#'
#' The function \code{blbin()} utilities the optimization procedure of the
#' \code{optim()} function to determine the model parameters. There is a tendency
#' for optimization algorithms to settle at a local optimum. To remove the risk of
#' settling for local optimum parameters, it is advised that the function is run
#' using several starting values and the results with the smallest error
#' (weighted residue sum square) can be taken as a representation of the global
#' optimum.
#'
#' The common errors encountered due to poor start values \enumerate{
#' \item function cannot be evaluated at initial parameters
#' \item initial value in 'vmmin' is not finite}
#'
#' @references
#'
#' Cade, B. S., & Noon, B. R. (2003). A gentle introduction to quantile regression
#' for ecologists. Frontiers in Ecology and the Environment, 1(8), 412-420.
#'
#' Nelder, J.A. 1961. The fitting of a generalization of the logistic curve.
#' Biometrics 17: 89–110.
#'
#' Phillips, B.F. & Campbell, N.A. 1968. A new method of fitting the von Bertelanffy
#' growth curve using data on the whelk. Dicathais, Growth 32: 317–329.
#'
#' Schmidt, U., Thöni, H., & Kaupenjohann, M. (2000). Using a boundary line approach
#' to analyze N2O flux data from agricultural soils. Nutrient Cycling in Agroecosystems,
#' 57, 119-129.
#
#' @author Chawezi Miti <chawezi.miti@@nottingham.ac.uk>
#'
#' @export
#'
#' @rdname blqr
#' @usage
#' blqr(x,y,model, equation=NULL,start,tau=0.95,optim.method="Nelder-Mead",
#' xmin=min(bound$x),xmax=max(bound$x), plot=TRUE,line_col="red",lwd=1,
#' line_smooth=1000,...)
#'
#' @examples
#'
#' x<-log(SoilP$P)
#' y<-SoilP$yield
#' start<-c(4,3,13.6)
#'
#' blqr(x,y, start=start,model = "lp", tau=0.99,
#' xlab=expression("ET mm ha"^-1),
#' ylab=expression("Wheat yield/ ton ha"^-1),
#' pch=16, col="grey")
#'
blqr<-function(x,y,model, equation=NULL,start,tau=0.95,optim.method="Nelder-Mead",
xmin=min(bound$x),xmax=max(bound$x),
plot=TRUE,line_col="red",lwd=1,line_smooth=1000,...){
#### Data preparation for quantile regression ------------------------------------------
BLMod<-model
if(plot==TRUE){plot(x,y,...)}
bound <- na.omit(as.data.table(data.frame(x=x,y=y))) #removes NA's
## Setting data limits for boundary model fitting --------------------------------------
L<-xmin
U<-xmax
if(L<min(bound$x)) stop("The set minimum limit is less than the mimum of bounding points")
if(U>max(bound$x)) stop("The set maximum limit is greater than the maximum of bounding points")
ifelse(L==min(bound$x), bound2<-bound, bound2<-bound[-which(bound$x<L),])
ifelse(U==max(bound2$x), data1<-bound2, data1<-bound2[-which(bound2$x>U),])
x<-data1$x
y<-data1$y
#### Fitting the two parameter Linear model --------------------------------------------
if(model=="blm"){
v<-length(start)
if(v>2) stop("start has more than two values")
if(v<2) stop("start has less than two values")
trap<-function(x,ar,br){
yr<-ar+br*x
yout<-yr
return(yout)
}
rss<-function(start,x,y){
ar=start[1]
br=start[2]
yf<-unlist(lapply(x,FUN=trap,ar=ar,br=br))
err<-(y-yf)
errx<-sum(sum(err[which(err>0|err==0)])*tau +
sum(abs(err[which(err<0)]))*(1-tau))
return(errx)
}
parscale<-function(a,x,y){
eps=1e-4
nr<-length(a)
part<-vector("numeric",nr)
for (i in 1:nr){
del<-rep(0,nr)
del[i]<-eps
part[i]<-(rss((a+del),x,y)-rss((a),x,y))/eps
}
return(part)
}
## Optimization using optim function--------------------------------------------------
start=start[1:2]
ooo<-optim(start,rss,x=x,y=y,hessian = T,method=optim.method) #find LS estimate of start given data in x,yobs
scale<-1/abs( parscale(ooo$par,x=x,y=y))
oo<-optim(ooo$par,rss,x=x,y=y,hessian = T,method=optim.method,control = list(parscale = scale))
ifelse(any(is.nan(oo$par))==T, oo<-ooo, oo<-oo)
arf=oo$par[1]
brf=oo$par[2]
if(plot==TRUE){
xfine=seq(min(x,na.rm = T),max(x,na.rm = T),(max(x,na.rm = T)-min(x,na.rm = T))/((max(x,na.rm = T)-min(x,na.rm = T))*line_smooth))
yfit<-lapply(xfine,FUN=trap,ar=arf,br=brf)
yfit<-unlist(yfit)
lines(xfine,yfit,lwd=lwd,col=line_col)
}
hesmat<-oo$hessian
estimates<-matrix(NA,length(start),1,dimnames=list(c(),c("Estimate")))
estimates[,1]<-oo$par
rownames(estimates)<-c("\u03B2\u2081","\u03B2\u2082")
RSS<-oo$value
Equation<-noquote("y = \u03B2\u2081 + \u03B2\u2082x")
Parameters<-list(Model=BLMod,Equation=Equation,Parameters=estimates,RSS= RSS,Hessian= hesmat,
Start=start,optimMethod=optim.method,data=data1)
class(Parameters) <- "cm" #necessary for only printing only part of the output
return(Parameters)
}
#### Fitting the three parameter Linear model ------------------------------------------
if(model=="lp"|model=="logistic"|model=="logisticND"|model=="inv-logistic"|model=="qd"|model=="mit"|model=="schmidt"){
v<-length(start)
if(v>3) stop("start has more than three values")
if(v<3) stop("start has less than three values")
## set the function for each method---------------------------------------------------
if(model=="lp"){
Equation<-noquote("y = min (\u03B2\u2081 + \u03B2\u2082x, \u03B2\u2080)")
trap1<-function(x,ar,br,ym){
yr<-ar+br*x
yout<-min(c(yr,ym))
return(yout)
}}
if(model=="logistic"){
Equation<-noquote("y = \u03B2\u2080/(1+exp(\u03B2\u2082(\u03B2\u2081-x)))")
trap1<-function(x,ar,br,ym){
yr<-ym/(1+exp(br*(ar-x)))
yout<-yr
return(yout)
}
}
if(model=="logisticND"){
Equation<-noquote("y = \u03B2\u2080/1+[\u03B2\u2081exp(-\u03B2\u2082*x)]")
trap1<-function(x,ar,br,ym){
yr<-ym/(1+(ar*exp(-br*x)))
yout<-yr
return(yout)
}
}
if(model=="inv-logistic"){
Equation<-noquote("y = \u03B2\u2080/(1+exp(\u03B2\u2082(\u03B2\u2081-x)))")
trap1<-function(x,ar,br,ym){
yr<-ym-(ym/(1+exp(br*(ar-x))))
yout<-yr
return(yout)
}
}
if(model=="qd"){
Equation<-noquote("y = \u03B2\u2081 + \u03B2\u2082x + \u03B2\u2083x\u00B2")
trap1<-function(x,ar,br,ym){
yr<- ar + br*x + ym*x*x
yout<-yr
return(yout)
}
}
if(model=="mit"){
Equation<-noquote("y = \u03B2\u2080 + \u03B2\u2081*\u03B2\u2082^x")
trap1<-function(x,ar,br,ym){
yr<-ym-ar*br^x
yout<-yr
return(yout)
}
}
if(model=="schmidt"){
Equation<-noquote("y = \u03B2\u2080 - \u03B2\u2081 (1-\u03B2\u2082)\u00B2)")
trap1<-function(x,ar,br,ym){
yr<-ym-ar*(x-br)*(x-br)
yout<-yr
return(yout)
}
}
## Loss function----------------------------------------------------------------------
rss1<-function(start,x,y){
ar=start[1]
br=start[2]
ym=start[3]
yf<-unlist(lapply(x,FUN=trap1,ar=ar,br=br,ym=ym))
err<-(y-yf)
errx<-sum(sum(err[which(err>0|err==0)])*tau +
sum(abs(err[which(err<0)]))*(1-tau))
return(errx)
}
parscale1<-function(a,x,y){
eps=1e-4
nr<-length(a)
part<-vector("numeric",nr)
for (i in 1:nr){
del<-rep(0,nr)
del[i]<-eps
part[i]<-(rss1((a+del),x,y)-rss1((a),x,y))/eps
}
return(part)
}
## Optimization using optim function--------------------------------------------------
start=start[1:3]
ooo<-optim(start,rss1,x=x,y=y, hessian = T,method=optim.method)
scale<-1/abs( parscale1(ooo$par,x=x,y=y))
oo<-optim(ooo$par,rss1,x=x,y=y, hessian = T,method=optim.method,control = list(parscale = scale))
ifelse(any(is.nan(oo$par))==T, oo<-ooo, oo<-oo)
arf=oo$par[1]
brf=oo$par[2]
ymf=oo$par[3]
if(plot==TRUE){
xfine=seq(min(x,na.rm = T),max(x,na.rm = T),(max(x,na.rm = T)-min(x,na.rm = T))/((max(x,na.rm = T)-min(x,na.rm = T))*line_smooth)) #needs attention
yfit<-lapply(xfine,FUN=trap1,ar=arf,br=brf,ym=ymf)
yfit<-unlist(yfit)
lines(xfine,yfit,lwd=lwd,col=line_col)}
hesmat<-oo$hessian
estimates<-matrix(NA,length(start),1,dimnames=list(c(),c("Estimate")))
estimates[,1]<-oo$par
rownames(estimates)<-c("\u03B2\u2081","\u03B2\u2082","\u03B2\u2080")
RSS<-oo$value
Parameters<-structure(list(Model=BLMod,Equation=Equation,Parameters=estimates,RSS= RSS,Hessian= hesmat,
Start=start,optimMethod=optim.method,data=data1), class = "cm")
class(Parameters) <- "cm" #necessary for only printing only part of the output
return(Parameters)
}
#### Fitting the five parameter trapezium model ----------------------------------------
if(model=="trapezium"){
v<-length(start)
if(v>5) stop("start has more than five values")
if(v<5) stop("start has less than five values")
trap2<-function(x,ar,br,ym,af,bf){
yr<-ar+br*x
yf<-af+bf*x
yout<-min(c(yr,yf,ym))
return(yout)
}
rss2<-function(start,x,y){
ar=start[1]
br=start[2]
ym=start[3]
af=start[4]
bf=start[5]
yf<-unlist(lapply(x,FUN=trap2,ar=ar,br=br,ym=ym,af=af,bf=bf))
err<-(y-yf)
errx<-sum(sum(err[which(err>0|err==0)])*tau +
sum(abs(err[which(err<0)]))*(1-tau))
return(errx)
}
parscale2<-function(a,x,y){
eps=1e-4
nr<-length(a)
part<-vector("numeric",nr)
for (i in 1:nr){
del<-rep(0,nr)
del[i]<-eps
part[i]<-(rss2((a+del),x,y)-rss2((a),x,y))/eps
}
return(part)
}
## Optimization using the optim function----------------------------------------------
start=start[1:5]
ooo<-optim(start,rss2,x=x,y=y, hessian = T,method=optim.method) #find LS estimate of start given data in x,yobs
scale<-1/abs( parscale2(ooo$par,x=x,y=y))
oo<-optim(ooo$par,rss2,x=x,y=y, hessian = T,method=optim.method,control = list(parscale = scale))
ifelse(any(is.nan(oo$par))==T, oo<-ooo, oo<-oo) #rescalling sometimes produces NaN
# and hence this make it to use the original values in ooo.
arf=oo$par[1]
brf=oo$par[2]
ymf=oo$par[3]
aff=oo$par[4]
bff=oo$par[5]
bp1<-(ymf-arf)/(brf) #estimates of the boundary break points
bp2<-(ymf-aff)/(bff) #estimates of the boundary break points
if(plot==TRUE){
xfine=seq(min(x,na.rm = T),max(x,na.rm = T),(max(x,na.rm = T)-min(x,na.rm = T))/((max(x,na.rm = T)-min(x,na.rm = T))*line_smooth)) # this needs attention in all methods
yfit<-lapply(xfine,FUN=trap2,ar=arf,br=brf,ym=ymf,af=aff,bf=bff)
yfit<-unlist(yfit)
lines(xfine,yfit,lwd=lwd,col=line_col)}
hesmat<-oo$hessian
estimates<-matrix(NA,length(start),1,dimnames=list(c(),c("Estimate")))
estimates[,1]<-oo$par
rownames(estimates)<-c("\u03B2\u2081","\u03B2\u2082","\u03B2\u2080","\u03B2\u2083","\u03B2\u2084")
RSS<-oo$value
Equation<-noquote("y = min(\u03B2\u2081 + \u03B2\u2082x, \u03B2\u2080, \u03B2\u2083 + \u03B2\u2084x)")
Parameters<-list(Model=BLMod,Equation=Equation,Parameters=estimates,RSS= RSS,Hessian= hesmat,
Start=start,optimMethod=optim.method,data=data1)
class(Parameters) <- "cm" #necessary for only printing only part of the output
return(Parameters)
}
#### Fitting the six parameter double-Logistic model -----------------------------------
if(model=="double-logistic"){
v<-length(start)
if(v>6) warning("start has more than six values")
if(v<6) stop("start has less than six values")
trap3<-function(x,ar,br,ym,yn, af, bf){
yr<-ym/(1 + exp((br*(ar-x)))) - yn/(1 + exp((bf*(af-x))))
yout<-yr
return(yout)
}
rss3<-function(start,x,y){
ar=start[1]
br=start[2]
ym=start[3]
yn=start[4]
af=start[5]
bf=start[6]
yf<-unlist(lapply(x,FUN=trap3,ar=ar,br=br,ym=ym, yn=yn, af=af, bf=bf))
err<-(y-yf)
errx<-sum(sum(err[which(err>0|err==0)])*tau +
sum(abs(err[which(err<0)]))*(1-tau))
return(errx)
}
parscale3<-function(a,x,y){
eps=1e-4
nr<-length(a)
part<-vector("numeric",nr)
for (i in 1:nr){
del<-rep(0,nr)
del[i]<-eps
part[i]<-(rss3((a+del),x,y)-rss3((a),x,y))/eps
}
return(part)
}
## Optimization using optim function--------------------------------------------------
start=start[1:6]
ooo<-optim(start,rss3,x=x,y=y, hessian = T,method=optim.method)
scale<-1/abs( parscale3(ooo$par,x=x,y=y))
oo<-optim(ooo$par,rss3,x=x,y=y, hessian = T,method=optim.method,control = list(parscale = scale))
ifelse(any(is.nan(oo$par))==T, oo<-ooo, oo<-oo)
arf=oo$par[1]
brf=oo$par[2]
ymf=oo$par[3]
ynf=oo$par[4]
aff=oo$par[5]
bff=oo$par[6]
if(plot==TRUE){
xfine=seq(min(x,na.rm = T),max(x,na.rm = T),(max(x,na.rm = T)-min(x,na.rm = T))/((max(x,na.rm = T)-min(x,na.rm = T))*line_smooth)) #needs attention
yfit<-lapply(xfine,FUN=trap3,ar=arf,br=brf,ym=ymf,yn=ynf,af=aff,bf=bff)
yfit<-unlist(yfit)
lines(xfine,yfit,lwd=lwd,col=line_col)
}
hesmat<-oo$hessian
estimates<-matrix(NA,length(start),1,dimnames=list(c(),c("Estimate")))
estimates[,1]<-c(arf,brf,ymf, ynf, aff, bff)
rownames(estimates)<-c("\u03B2\u2081","\u03B2\u2082","\u03B2\u20801","\u03B2\u20802","\u03B2\u2083","\u03B2\u2084")
RSS<-oo$value
Equation<-noquote("y = {\u03B2\u20801/1+[exp(\u03B2\u2082*(\u03B2\u2081-x))]} - {\u03B2\u20801/1+[exp(\u03B2\u2084*(\u03B2\u2083-x))]} ")
Parameters<-list(Model=BLMod,Equation=Equation,Parameters=estimates,RSS= RSS,Hessian= hesmat,
Start=start,optimMethod=optim.method,data=data1)
class(Parameters) <- "cm" #necessary for only printing only part of the output
return(Parameters)
}
#### CUSTOM FUNCTIONS ------------------------------------------------------------------
if(model=="other"){
#### Names in start and rearranging them --------------------------------------------
are_entries_named <- function(vec) {
# Check if names attribute is not NULL
if (is.null(names(vec))) {
return(FALSE)
}
# Check if all entries have non-NA and non-empty names
has_valid_names <- all(!is.na(names(vec))) && all(names(vec) != "")
return(has_valid_names)
}
if(are_entries_named(start)==TRUE){
start<-start[order(names(start))]
} else{
start<-start
}
start<-unname(start) # removes names from start
#### Dynamic parameter handling -------------------------------------------------------
rss4 <- function(start, x, y, equation) {
param_list <- as.list(start)
names(param_list) <- letters[1:length(start)]
yf <- do.call(equation, c(list(x=x), param_list))
err<-(y-yf)
errx<-sum(sum(err[which(err>0|err==0)])*tau +
sum(abs(err[which(err<0)]))*(1-tau))
return(errx)
}
## Scaling function for dynamic parameters --------------------------------------------
parscale4 <- function(k, x, y, equation) {
eps <- 1e-4
nr <- length(k)
part <- vector("numeric", nr)
for (i in 1:nr) {
del <- rep(0, nr)
del[i] <- eps
part[i] <- (rss4((k + del), x, y, equation) - rss4(k, x, y, equation)) / eps
}
return(part)
}
## Optimization using optim function -------------------------------------------------
ooo <- optim(start, rss4, x=x,y=y, method=optim.method, equation=equation)
scale <- 1 / abs(parscale4(ooo$par, x=x,y=y, equation=equation))
oo <- optim(ooo$par, rss4, x=x,y=y, method=optim.method, control=list(parscale=scale), equation=equation)
if (any(is.nan(oo$par))) {
oo <- ooo
}
param_values <- oo$par
names(param_values) <- letters[1:length(param_values)]
if (plot == TRUE) {
xfine <- seq(min(x, na.rm = TRUE), max(x, na.rm = TRUE), length.out = line_smooth)
yfit <- do.call(equation, c(list(x=xfine), as.list(param_values)))
lines(xfine, yfit, lwd=lwd, col=line_col)
}
estimates <- matrix(param_values, nrow=length(param_values), ncol=1)
rownames(estimates) <- names(param_values)
colnames(estimates) <- "Estimate"
RSS <- oo$value
Equation<-equation # to print equation in output
RSS<-oo$value
Parameters<-structure(list(Model=BLMod,Equation=equation,Parameters=estimates,RSS= RSS), class = "cm")
return(Parameters)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.