Nothing
## ----setup, message=FALSE, warning=FALSE, include=FALSE-----------------------
knitr::opts_knit$set(root.dir = ".")
knitr::opts_chunk$set(collapse = TRUE,
warning = TRUE,
comment = "#>")
## ----from_list, message=FALSE-------------------------------------------------
library("BaseSet")
gene_lists <- list(
geneset1 = c("A", "B"),
geneset2 = c("B", "C", "D")
)
tidy_set <- tidySet(gene_lists)
tidy_set
## ----metadata, message=FALSE--------------------------------------------------
gene_data <- data.frame(
stat1 = c( 1, 2, 3, 4 ),
info1 = c("a", "b", "c", "d")
)
tidy_set <- add_column(tidy_set, "elements", gene_data)
set_data <- data.frame(
Group = c( 100 , 200 ),
Column = c("abc", "def")
)
tidy_set <- add_column(tidy_set, "sets", set_data)
tidy_set
## ----getters------------------------------------------------------------------
relations(tidy_set)
elements(tidy_set)
sets(tidy_set)
## -----------------------------------------------------------------------------
gene_data <- data.frame(
stat2 = c( 4, 4, 3, 5 ),
info2 = c("a", "b", "c", "d")
)
tidy_set$info1 <- NULL
tidy_set[, "elements", c("stat2", "info2")] <- gene_data
tidy_set[, "sets", "Group"] <- c("low", "high")
tidy_set
## ----tidyset_data.frame-------------------------------------------------------
relations <- data.frame(elements = c("a", "b", "c", "d", "e", "f"),
sets = c("A", "A", "A", "A", "A", "B"),
fuzzy = c(1, 1, 1, 1, 1, 1))
TS <- tidySet(relations)
TS
## ----tidySet_matrix-----------------------------------------------------------
m <- matrix(c(0, 0, 1, 1, 1, 1, 0, 1, 0), ncol = 3, nrow = 3,
dimnames = list(letters[1:3], LETTERS[1:3]))
m
tidy_set <- tidySet(m)
tidy_set
## ----as.list------------------------------------------------------------------
as.list(tidy_set)
## ----incidence----------------------------------------------------------------
incidence(tidy_set)
## ----union--------------------------------------------------------------------
BaseSet::union(tidy_set, sets = c("C", "B"), name = "D")
## ----intersection-------------------------------------------------------------
intersection(tidy_set, sets = c("A", "B"), name = "D", keep = TRUE)
## ----intersection2------------------------------------------------------------
intersection(tidy_set, sets = c("A", "B"), name = "D", keep = FALSE)
## ----complement---------------------------------------------------------------
complement_set(tidy_set, sets = c("A", "B"))
## ----complement2--------------------------------------------------------------
complement_set(tidy_set, sets = c("A", "B"), name = "F")
## ----subtract-----------------------------------------------------------------
out <- subtract(tidy_set, set_in = "A", not_in = "B", name = "A-B")
out
name_sets(out)
subtract(tidy_set, set_in = "B", not_in = "A", keep = FALSE)
## ----n------------------------------------------------------------------------
nElements(tidy_set)
nSets(tidy_set)
nRelations(tidy_set)
## ----set_size-----------------------------------------------------------------
set_size(tidy_set)
## ----element_size-------------------------------------------------------------
element_size(tidy_set)
## ----name---------------------------------------------------------------------
name_elements(tidy_set)
name_elements(tidy_set) <- paste0("Gene", seq_len(nElements(tidy_set)))
name_elements(tidy_set)
name_sets(tidy_set)
name_sets(tidy_set) <- paste0("Geneset", seq_len(nSets(tidy_set)))
name_sets(tidy_set)
## ----tidyverse----------------------------------------------------------------
library("dplyr")
m_TS <- tidy_set %>%
activate("relations") %>%
mutate(Important = runif(nRelations(tidy_set)))
m_TS
## ----deactivate---------------------------------------------------------------
set_modified <- m_TS %>%
activate("elements") %>%
mutate(Pathway = if_else(elements %in% c("Gene1", "Gene2"),
"pathway1",
"pathway2"))
set_modified
set_modified %>%
deactivate() %>% # To apply a filter independently of where it is
filter(Pathway == "pathway1")
## ----group--------------------------------------------------------------------
# A new group of those elements in pathway1 and with Important == 1
set_modified %>%
deactivate() %>%
group(name = "new", Pathway == "pathway1")
## ----group2-------------------------------------------------------------------
set_modified %>%
group("pathway1", elements %in% c("Gene1", "Gene2"))
## ----group_by-----------------------------------------------------------------
set_modified %>%
deactivate() %>%
group_by(Pathway, sets) %>%
count()
## ----moving-------------------------------------------------------------------
elements(set_modified)
out <- move_to(set_modified, "elements", "relations", "Pathway")
relations(out)
## ----sessionInfo, echo=FALSE--------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.