Nothing
B_PB.IDX <- function(x, kmax,
method = 'kmeans',
corr = 'pearson',
nstart = 100,
alpha = "default",
mult.alpha = 1/2){
if(missing(x))
stop("Missing input argument. A numeric data frame or matrix is required")
if(missing(kmax))
stop("Missing input argument. A maximum number of clusters is required")
if(!is.numeric(kmax))
stop("Argument 'kmax' must be numeric")
if(kmax > nrow(x))
stop("The maximum number of clusters for consideration should be less than or equal to the number of data points in dataset.")
if(!any(method == c("kmeans","hclust_complete","hclust_average","hclust_single")))
stop("Argument 'method' should be one of 'kmeans', 'hclust_complete', 'hclust_average', 'hclust_single'")
if(method == "kmeans"){
if(!is.numeric(nstart))
stop("Argument 'nstart' must be numeric")
}
if(!any(corr == c("pearson","kendall","spearman")))
stop("Argument 'corr' should be one of 'pearson', 'kendall', 'spearman'")
if(startsWith(method,"hclust_")){
H.model = hclust(dist(x),method = sub("hclust_", "", method))
}
if(!is.numeric(mult.alpha))
stop("Argument 'mult.alpha' must be numeric")
n = nrow(x)
kmin = 2 #fix value
if(any(alpha %in% "default")){
alpha = rep(1,length(kmin:kmax))
}
if(length(kmin:kmax) != length(alpha)) # check
stop("The length of kmin to kmax must be equal to the length of alpha")
adj.alpha = alpha*(n)^mult.alpha
# index part
d = as.vector(dist(x))
dm = dim(x)
pb = vector()
for(k in kmin:kmax){
xnew = matrix(0,dm[1],dm[2])
centroid = matrix(0,k,dm[2])
if(method == "kmeans"){
K.model = kmeans(x,k,nstart =nstart)
cluss = K.model$cluster
centroid = K.model$centers
xnew = centroid[cluss,]
} else if(startsWith(method,"hclust_")){
cluss = cutree(H.model,k)
for (j in 1:k){
if (is.null(nrow(x[cluss==j,])) | sum(nrow(x[cluss==j,]))==1){
centroid[j,] = as.numeric(x[cluss==j,])
} else {
centroid[j,] = colMeans(x[cluss==j,])
}
}
xnew = centroid[cluss,]
} # End check algorithm
if(!all(seq(k) %in% unique(cluss)))
warning("Some clusters are empty.")
d3 = as.vector(dist(xnew))
d3[d3>0] = 1
pb[k-kmin+1] = cor(d,d3,method=corr)
}
# Bayesian
CVI.dframe = data.frame("C" = kmin:kmax,"Index" = pb)
minGI = min(CVI.dframe[,"Index"]) # The largest value of the GI indicates the optimal number of cluster
rk = (CVI.dframe[,"Index"] - minGI)/sum(CVI.dframe[,"Index"] - minGI)
nrk = n*rk
ex = (adj.alpha + nrk) / (sum(adj.alpha)+ n)
var = ((adj.alpha+nrk)*(sum(adj.alpha)+n - adj.alpha - nrk))/((sum(adj.alpha)+n)^2*(sum(adj.alpha)+n+1))
BCVI = data.frame("k" = kmin:kmax,"BCVI" = ex)
VarBCVI = data.frame("k" = kmin:kmax,"Var" = var)
colnames(CVI.dframe) = c("k","PB")
PB.result = list("BCVI" = BCVI,"VAR" = VarBCVI,"Index" = CVI.dframe)
return(PB.result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.