Nothing
B_STRPBM.IDX <- function(x, kmax,
method = 'kmeans',
indexlist = 'all', #c(,"all","STR","PBM")
nstart = 100,
alpha = "default",
mult.alpha = 1/2){
if(missing(x))
stop("Missing input argument. A numeric data frame or matrix is required")
if(missing(kmax))
stop("Missing input argument. A maximum number of clusters is required")
if(!is.numeric(kmax))
stop("Argument 'kmax' must be numeric")
if(kmax > nrow(x))
stop("The maximum number of clusters for consideration should be less than or equal to the number of data points in dataset.")
if(!any(method == c("kmeans","hclust_complete","hclust_average","hclust_single")))
stop("Argument 'method' should be one of 'kmeans', 'hclust_complete', 'hclust_average', 'hclust_single'")
if(!any(indexlist %in% c("all","STR","PBM")))
stop("Argument 'indexlist' should be 'all', 'STR', 'PBM'")
if(method == "kmeans"){
if(!is.numeric(nstart))
stop("Argument 'nstart' must be numeric")
}
if(startsWith(method,"hclust_")){
H.model = hclust(dist(x),method = sub("hclust_", "", method))
}
if(!is.numeric(mult.alpha))
stop("Argument 'mult.alpha' must be numeric")
n = nrow(x)
kmin = 2 #fix value
if(any(alpha %in% "default")){
alpha = rep(1,length(kmin:kmax))
}
if(length(kmin:kmax) != length(alpha)) # check
stop("The length of kmin to kmax must be equal to the length of alpha")
adj.alpha = alpha*(n)^mult.alpha
# index part
dm = dim(x)
str = rep(0,kmax-kmin+1)
pbm = rep(0,kmax-kmin+1)
EK = rep(0,kmax-kmin+2)
DK = rep(0,kmax-kmin+3)
md = rep(0,kmax-kmin+3)
if (kmin == 2){
lb = 2
} else {
lb = kmin-1
}
for(k in lb:(kmax+1)){
xnew = matrix(0,dm[1],dm[2])
centroid = matrix(0,k,dm[2])
if(method == "kmeans"){
K.model = kmeans(x,k,nstart =nstart)
cluss = K.model$cluster
centroid = K.model$centers
xnew = centroid[cluss,]
} else if(startsWith(method,"hclust_")){
cluss = cutree(H.model,k)
for (j in 1:k){
if (is.null(nrow(x[cluss==j,])) | sum(nrow(x[cluss==j,]))==1){
centroid[j,] = as.numeric(x[cluss==j,])
} else {
centroid[j,] = colMeans(x[cluss==j,])
}
}
xnew = centroid[cluss,]
} # End check algorithm
if(!all(seq(k) %in% unique(cluss)))
warning("Some clusters are empty.")
EK[k-kmin+2] = sum(sqrt(rowSums((x - xnew)^2)))
ddd = dist(centroid)
md[k-kmin+2] = max(ddd)
DK[k-kmin+2] = max(ddd)/min(ddd)
}
E0 = sum(sqrt(rowSums((x-colMeans(x))^2)))
if (kmin == 2){
EK[1] = E0
}
EKK = E0/EK
str = (EKK[2:(length(EKK)-1)]-EKK[1:(length(EKK)-2)])*(DK[3:(length(DK))]-DK[2:(length(DK)-1)])
pbm = EKK[2:(length(EKK)-1)]*md[2:(length(EKK)-1)]/(kmin:kmax)
# Bayesian part
if(any(indexlist %in% "all")){
indexlist = c("STR","PBM")
}
STR.list = list()
for (idx in seq(length(indexlist))) {
CVI.dframe = data.frame("C" = kmin:kmax,"Index" = get(tolower(indexlist[idx])))
minGI = min(CVI.dframe[,"Index"]) # The largest value of the GI indicates the optimal number of cluster
rk = (CVI.dframe[,"Index"] - minGI)/sum(CVI.dframe[,"Index"] - minGI)
nrk = n*rk
ex = (adj.alpha + nrk) / (sum(adj.alpha)+ n)
var = ((adj.alpha+nrk)*(sum(adj.alpha)+n - adj.alpha - nrk))/((sum(adj.alpha)+n)^2*(sum(adj.alpha)+n+1))
BCVI = data.frame("k" = kmin:kmax,"BCVI" = ex)
VarBCVI = data.frame("k" = kmin:kmax,"Var" = var)
colnames(CVI.dframe) = c("k",paste0(indexlist[idx]))
list.re = list("BCVI" = BCVI,"VAR" = VarBCVI,"Index" = CVI.dframe)
assign(paste0(indexlist[idx],"_list"),list.re)
STR.list[[paste0(indexlist[idx])]] = get(paste0(indexlist[idx],"_list"))
}
if (sum(indexlist == "all")==1){
return(STR.list)
} else {
return(STR.list[indexlist])
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.