Description Usage Arguments Value Examples

Take an object and redo the computation (useful for sampling). In cases where sampling is used to compute the Bayes factor, the estimate of the precision of new samples will be added to the estimate precision of the old sample will be added to produce a new estimate of the precision.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ```
recompute(x, progress = getOption("BFprogress", interactive()),
multicore = FALSE, callback = function(...) as.integer(0), ...)
## S4 method for signature 'BFBayesFactor'
recompute(x, progress = getOption("BFprogress",
interactive()), multicore = FALSE, callback = function(...) as.integer(0),
...)
## S4 method for signature 'BFBayesFactorTop'
recompute(x, progress = getOption("BFprogress",
interactive()), multicore = FALSE, callback = function(...) as.integer(0),
...)
## S4 method for signature 'BFmcmc'
recompute(x, progress = getOption("BFprogress",
interactive()), multicore = FALSE, callback = function(...) as.integer(0),
...)
## S4 method for signature 'BFodds'
recompute(x, progress = getOption("BFprogress",
interactive()), multicore = FALSE, callback = function(...) as.integer(0),
...)
``` |

`x` |
object to recompute |

`progress` |
report progress of the computation? |

`multicore` |
Use multicore, if available |

`callback` |
callback function for third-party interfaces |

`...` |
arguments passed to and from related methods |

Returns an object of the same type, after repeating the sampling (perhaps with more iterations)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ```
## Sample from the posteriors for two models
data(puzzles)
## Main effects model; result is a BFmcmc object, inheriting
## mcmc from the coda package
bf = lmBF(RT ~ shape + color + ID, data = puzzles, whichRandom = "ID",
progress = FALSE)
## recompute Bayes factor object
recompute(bf, iterations = 1000, progress = FALSE)
## Sample from posterior distribution of model above, and recompute:
chains = posterior(bf, iterations = 1000, progress = FALSE)
newChains = recompute(chains, iterations = 1000, progress=FALSE)
``` |

BayesFactor documentation built on May 19, 2018, 5:04 p.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.