recompute-methods: Recompute a Bayes factor computation or MCMC object. In BayesFactor: Computation of Bayes Factors for Common Designs

Description

Take an object and redo the computation (useful for sampling). In cases where sampling is used to compute the Bayes factor, the estimate of the precision of new samples will be added to the estimate precision of the old sample will be added to produce a new estimate of the precision.

Usage

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 recompute(x, progress = options()\$BFprogress, multicore = FALSE, callback = function(...) as.integer(0), ...) ## S4 method for signature 'BFBayesFactor' recompute(x, progress = options()\$BFprogress, multicore = FALSE, callback = function(...) as.integer(0), ...) ## S4 method for signature 'BFBayesFactorTop' recompute(x, progress = options()\$BFprogress, multicore = FALSE, callback = function(...) as.integer(0), ...) ## S4 method for signature 'BFmcmc' recompute(x, progress = options()\$BFprogress, multicore = FALSE, callback = function(...) as.integer(0), ...) ## S4 method for signature 'BFodds' recompute(x, progress = options()\$BFprogress, multicore = FALSE, callback = function(...) as.integer(0), ...)

Arguments

 x object to recompute progress report progress of the computation? multicore Use multicore, if available callback callback function for third-party interfaces ... arguments passed to and from related methods

Value

Returns an object of the same type, after repeating the sampling (perhaps with more iterations)

Examples

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ## Sample from the posteriors for two models data(puzzles) ## Main effects model; result is a BFmcmc object, inheriting ## mcmc from the coda package bf = lmBF(RT ~ shape + color + ID, data = puzzles, whichRandom = "ID", progress = FALSE) ## recompute Bayes factor object recompute(bf, iterations = 1000, progress = FALSE) ## Sample from posterior distribution of model above, and recompute: chains = posterior(bf, iterations = 1000, progress = FALSE) newChains = recompute(chains, iterations = 1000, progress=FALSE)

BayesFactor documentation built on May 29, 2017, 3:51 p.m.