Nothing
test_that("setup_rank_data works with rankings", {
expect_error(setup_rank_data(), "Either rankings or preferences")
expect_error(
setup_rank_data(
potato_visual,
observation_frequency =
seq(from = -2, length.out = nrow(potato_visual), by = 1)
),
"observation_frequency must be a vector of strictly positive numbers"
)
rr <- potato_visual
rr[1, 1] <- NA
expect_error(
setup_rank_data(rr, na_action = "fail"),
"rankings matrix contains NA values"
)
expect_snapshot(
dat <- setup_rank_data(rr, na_action = "omit")
)
expect_equal(dim(dat$rankings), c(11, 20))
dat <- setup_rank_data(potato_visual,
observation_frequency = 1:12
)
dat2 <- setup_rank_data(potato_visual)
expect_equal(dat$rankings, dat2$rankings)
expect_error(
setup_rank_data(
rankings = potato_visual,
observation_frequency = 1:19
),
"observation_frequency must be of same length as the number of rows in rankings"
)
rr <- matrix(c(1, 1, 2, 1), ncol = 2)
expect_error(
setup_rank_data(rr),
"invalid permutations provided in rankings matrix"
)
dat <- setup_rank_data(rr, validate_rankings = FALSE)
expect_equal(dat$rankings, rr)
input1 <- potato_weighing[2, , drop = FALSE]
rownames(input1) <- NULL
input2 <- potato_weighing[2, ]
expect_equal(
setup_rank_data(input1),
setup_rank_data(input2)
)
})
test_that("setup_rank_data works for preferences", {
expect_error(
setup_rank_data(preferences = beach_preferences, max_topological_sorts = -1),
"max_topological_sorts must be a strictly positive number of length one"
)
rr <- matrix(rep(1:3, 2), byrow = TRUE, ncol = 3)
pp <- data.frame(assessor = 1:2, bottom_item = 2, top_item = 1)
dat <- setup_rank_data(rr, pp)
expect_equal(dat$rankings, rr)
expect_equal(as.data.frame(dat$preferences), pp)
rr <- matrix(rep(1:2, 2), byrow = TRUE, ncol = 2)
pp <- data.frame(assessor = 1:2, bottom_item = 3, top_item = 1)
dat <- setup_rank_data(rankings = rr, preferences = pp)
cl <- parallel::makeCluster(2)
dat2 <- setup_rank_data(rankings = rr, preferences = pp, cl = cl)
parallel::stopCluster(cl)
expect_equal(dat2$rankings, dat$rankings)
expect_equal(dat2$preferences, dat$preferences)
set.seed(1)
prefdat <- subset(beach_preferences, assessor <= 3)
dat <- setup_rank_data(preferences = prefdat)
expect_equal(dim(dat$rankings), c(3, 15))
expect_equal(sum(is.na(dat$rankings)), 0)
dat2 <- setup_rank_data(preferences = prefdat)
expect_false(
all(dat2$rankings == dat$rankings)
)
expect_equal(dat2$preferences, dat$preferences)
prefdat <- subset(
beach_preferences,
bottom_item <= 3 & top_item <= 3
)
dat1 <- setup_rank_data(
preferences = prefdat, max_topological_sorts = 20, n_items = 3
)
dat2 <- setup_rank_data(preferences = prefdat, max_topological_sorts = 1, n_items = 3)
expect_false(all(dat1$rankings == dat2$rankings))
expect_equal(dim(dat1$rankings), dim(dat2$rankings))
prefdat$assessor <- as.character(prefdat$assessor)
expect_error(
setup_rank_data(preferences = prefdat),
"assessor column in preferences must be numeric"
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.