Nothing
#' @title Sample size determination for replication success based on
#' effect size equivalence
#'
#' @description This function computes the standard error required to achieve
#' replication success with a certain probability and based on effect size
#' equivalence of original and replication effect size. Effect size
#' equivalence is defined by the confidence interval for the difference
#' between the original and replication effect sizes falling within an
#' equivalence region around zero defined by the specified margin.
#'
#' @param level 1 - confidence level of confidence interval for effect size
#' difference
#' @param dprior Design prior object
#' @param power Desired probability of replication success
#' @param margin The equivalence margin > 0 for the symmetric equivalence region
#' around zero
#' @param searchInt Interval for numerical search over replication standard
#' errors
#'
#' @return Returns an object of class \code{"ssdRS"}. See \code{\link{ssd}} for
#' details.
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' Anderson, S. F. and Maxwell, S. E. (2016). There's more than one way to
#' conduct a replication study: Beyond statistical significance. Psychological
#' Methods, 21(1), 1-12. \doi{10.1037/met0000051}
#'
#' @author Samuel Pawel
#'
#' @examples
#' ## specify design prior
#' to1 <- 0.2
#' so1 <- 0.05
#' dprior <- designPrior(to = to1, so = so1, tau = 0.05)
#' ssdEqu(level = 0.1, dprior = dprior, power = 0.8, margin = 0.2)
#'
#' @export
ssdEqu <- function(level, dprior, power, margin, searchInt = c(0, 2)) {
## input checks
stopifnot(
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level, level < 1,
class(dprior) == "designPrior",
length(power) == 1,
is.numeric(power),
is.finite(power),
0 < power, power < 1,
length(margin) == 1,
is.numeric(margin),
is.finite(margin),
margin > 0,
length(searchInt) == 2,
is.numeric(searchInt),
all(is.finite(searchInt)),
0 <= searchInt[1], searchInt[1] < searchInt[2]
)
## computing bound of margin
za <- stats::qnorm(p = 1 - level/2)
so <- dprior$so
marginLim <- za*so
if (margin <= marginLim) {
warning(paste0("Equivalence not achievable with specified margin (at least ",
round(marginLim, 3), ")"))
sr <- NaN
outPow <- NaN
} else {
## computing bound of probability of replication success
limP <- porsEqu(level = level, dprior = dprior, margin = margin, sr = 0)
if (power > limP) {
warning(paste0("Power not achievable with specified design prior (at most ",
round(limP, 3), ")"))
sr <- NaN
outPow <- NaN
} else {
## computing replication standard error sr
rootFun <- function(sr) {
porsEqu(level = level, dprior = dprior, margin = margin,
sr = sr) - power
}
res <- try(stats::uniroot(f = rootFun, interval = searchInt)$root, silent = TRUE)
if (inherits(res, "try-error")) {
sr <- NaN
outPow <- NaN
warning("Numerical problems, try adjusting searchInt")
} else {
sr <- res
## computing probability of replication success
outPow <- porsEqu(level = level, dprior = dprior, margin = margin, sr = sr)
}
}
}
## create output object
out <- list("designPrior" = dprior, "power" = power,
"powerRecomputed" = outPow, "sr" = sr,
"c" = so^2/sr^2,
type = paste("equivalence with confidence level =", signif(1 - level, 3),
"and margin =", signif(margin, 3), "(numerical computation)"))
class(out) <- "ssdRS"
return(out)
}
#' @title Probability of replication success based on effect size equivalence
#'
#' @description This function computes the probability to achieve replication
#' success on equivalence of original and replication effect size. Effect
#' size equivalence is defined by the confidence interval for the difference
#' between the original and replication effect sizes falling within an
#' equivalence region around zero defined by the specified margin.
#'
#' @param level 1 - confidence level of confidence interval for effect size
#' difference
#' @param dprior Design prior object
#' @param margin The equivalence margin > 0 for the symmetric equivalence region
#' around zero
#' @param sr Replication standard error
#'
#' @return The probability to achieve replication success
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' Anderson, S. F. and Maxwell, S. E. (2016). There's more than one way to
#' conduct a replication study: Beyond statistical significance. Psychological
#' Methods, 21(1), 1-12. \doi{10.1037/met0000051}
#'
#' @author Samuel Pawel
#'
#' @examples
#' ## specify design prior
#' to1 <- 2
#' so1 <- 0.05
#' dprior <- designPrior(to = to1, so = so1, tau = 0.1)
#' porsEqu(level = 0.1, dprior = dprior, margin = 0.3, sr = c(0.05, 0.03))
#'
#' @export
porsEqu <- function(level, dprior, margin, sr) {
## input checks
stopifnot(
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level, level < 1,
class(dprior) == "designPrior",
length(margin) == 1,
is.numeric(margin),
is.finite(margin),
margin > 0,
length(sr) > 0,
is.numeric(sr),
all(is.finite(sr)),
all(0 <= sr)
)
ps <- vapply(X = sr, FUN = function(sr1) {
## compute probability of replication success
to <- dprior$to
so <- dprior$so
sdiff <- sqrt(so^2 + sr1^2)
za <- stats::qnorm(p = 1 - level/2)
if (margin <= za*sdiff) {
p <- 0
} else {
sregion <- successRegion(intervals = cbind(to - margin + za*sdiff,
to + margin - za*sdiff))
p <- pors(sregion = sregion, dprior = dprior, sr = sr1)
}
return(p)}, FUN.VALUE = 1)
return(ps)
}
## ## checking some stuff
## ciDiff <- function(to, tr, so, sr, alpha = 0.05) {
## za <- stats::qnorm(p = 1 - alpha)
## sdiff <- sqrt(so^2 + sr^2)
## ci <- tr - to + c(-1, 1)*sdiff*za
## return(ci)
## }
## to <- 0.2
## so <- 0.04
## sr <- 0.06
## sdiff <- sqrt(so^2 + sr^2)
## delta <- 0.02
## za <- stats::qnorm(p = 1 - 0.05)
## tr <- to - delta + za*sdiff
## ciDiff(to = to, tr = tr, so = so, sr = sr)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.