Nothing
#' @title Sample size determination for replication success based on
#' meta-analytic significance
#'
#' @description This function computes the standard error required to achieve
#' replication success with a certain probability and based on statistical
#' significance of the fixed-effects meta-analytic effect estimate obtained
#' from combining original and replication effect estimates.
#'
#' @param level Significance level for the replication effect estimate
#' (one-sided and in the same direction as the original effect estimate)
#' @param dprior Design prior object
#' @param power Desired probability of replication success
#' @param searchInt Interval for numerical search over replication standard
#' errors
#'
#' @return Returns an object of class \code{"ssdRS"}. See \code{\link{ssd}} for
#' details.
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' @author Samuel Pawel
#'
#' @examples
#' ## specify design prior
#' to1 <- 2
#' so1 <- 1
#' dprior <- designPrior(to = to1, so = so1, tau = 0.25, sp = Inf)
#' ssdMeta(level = 0.025^2, dprior = dprior, power = 0.95)
#'
#' @export
ssdMeta <- function(level, dprior, power, searchInt = c(0, 10)) {
## input checks
stopifnot(
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level, level < 1,
class(dprior) == "designPrior",
length(power) == 1,
is.numeric(power),
is.finite(power),
0 < power, power < 1,
level < power,
length(searchInt) == 2,
is.numeric(searchInt),
all(is.finite(searchInt)),
0 <= searchInt[1], searchInt[1] < searchInt[2]
)
## computing bound of probability of replication success
limP <- porsMeta(level = level, dprior = dprior, sr = 0)
if (power > limP) {
warning(paste0("Power not achievable with specified design prior (at most ",
round(limP, 3), ")"))
sr <- NaN
outPow <- NaN
} else {
## computing replication standard error sr
rootFun <- function(sr) {
porsMeta(level = level, dprior = dprior, sr = sr) - power
}
res <- try(stats::uniroot(f = rootFun, interval = searchInt)$root, silent = TRUE)
if (inherits(res, "try-error")) {
## TODO it happens that the power is always larger, what should we
## do then?
sr <- NaN
outPow <- NaN
warning("Numerical problems, try adjusting searchInt")
} else {
sr <- res
## computing probability of replication success
outPow <- porsMeta(level = level, dprior = dprior, sr = sr)
}
}
## create output object
out <- list("designPrior" = dprior, "power" = power,
"powerRecomputed" = outPow, "sr" = sr,
"c" = dprior$so^2/sr^2,
type = paste("meta-analytic p-value <=", signif(level, 3),
"(numerical computation)"))
class(out) <- "ssdRS"
return(out)
}
#' @title Probability of replication success based on meta-analytic significance
#'
#' @description This function computes the probability to achieve replication
#' success on statistical significance of the fixed-effects meta-analytic
#' effect estimate obtained from combining original and replication effect
#' estimates.
#'
#' @param level Significance level for p-value of the meta-analytic effect
#' estimate (one-sided and in the same direction as the original effect
#' estimate)
#' @param dprior Design prior object
#' @param sr Replication standard error
#'
#' @return The probability to achieve replication success
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' @author Samuel Pawel
#'
#' @examples
#' ## specify design prior
#' to1 <- 2
#' so1 <- 1
#' dprior <- designPrior(to = to1, so = so1, tau = 0.1)
#' porsMeta(level = 0.025^2, dprior = dprior, sr = c(0.2, 0.1))
#'
#' @export
porsMeta <- function(level, dprior, sr) {
## input checks
stopifnot(
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level, level < 1,
class(dprior) == "designPrior",
length(sr) > 0,
is.numeric(sr),
all(is.finite(sr)),
all(0 <= sr)
)
ps <- vapply(X = sr, FUN = function(sr1) {
## success region depends on direction of original estimate
so <- dprior$so
to <- dprior$to
if (sign(dprior$to) >= 0) {
lowerLim <- stats::qnorm(p = 1 - level)*sr1*sqrt(1 + sr1^2/so^2) -
to*sr1^2/so^2
sregion <- successRegion(intervals = cbind(lowerLim, Inf))
} else {
upperLim <- stats::qnorm(p = level)*sr*sqrt(1 + sr1^2/so^2) -
to*sr1^2/so^2
sregion <- successRegion(cbind(-Inf, upperLim))
}
## compute probability of replication success
pors(sregion = sregion, dprior = dprior, sr = sr1)
}, FUN.VALUE = 1)
return(ps)
}
## ## checking some stuff
## pmeta <- function(to, tr, so, sr) {
## sm <- 1/sqrt(1/so^2 + 1/sr^2)
## tm <- sm^2*(to/so^2 + tr/sr^2)
## return(stats::pnorm(q = tm/sm, lower = FALSE))
## }
## to <- 0.5
## so <- 0.8
## sr <- 1.1
## sm <- 1/sqrt(1/so^2 + 1/sr^2)
## za <- stats::qnorm(p = 0.975)
## tr <- sr^2*(za/sm - to/so^2)
## tr <- sr*za*sqrt(1 + sr^2/so^2) - to*sr^2/so^2
## pmeta(to = to, tr = tr, so = so, sr = sr)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.