Nothing
context("Test utility functions")
skip_on_cran()
# sampleEquallySpaced
test_that("sampleEquallySpaced returns right number of samples", {
# number of tests
n_tests = 250
# maximumum number of samples
max_n_samples = 1000
# the target length should sometimes be lower or higher than the max_n_samples to simulate errors
# the higher the margin the more of these errors will occur
margin <- round(max_n_samples * 0.05)
# vectors
for (i in 1:n_tests) {
# create vector of random length
vec <- rep(1, sample(1:max_n_samples, 1))
# create random target length for sampling
test_len <- sample((1 - margin):(max_n_samples + margin), 1)
# try to sample vector to target length test_len
result <- suppressWarnings(sampleEquallySpaced(vec, test_len))
if (test_len <= 1) {
expect_true(length(result) == 1)
} else if (test_len >= length(vec)) {
expect_true(length(result) == length(vec))
} else {
expect_true(length(result) == test_len)
}
}
# matrices
# max number of columns in test matrix
max_n_col = 10;
for (i in 1:n_tests) {
# random number of columns
n_col = sample(2:max_n_col, 1)
# create matrix of random length
vec <- rep(1, sample(1:max_n_samples, 1) * n_col)
mat <- matrix(vec, ncol = n_col)
# create random target length for sampling
test_len <- sample((1 - margin):(max_n_samples + margin), 1)
#try to sample matrix to target length test_len
result <- suppressWarnings(sampleEquallySpaced(mat, test_len))
if (test_len <= 1) {
expect_true(length(result) == n_col)
} else if (test_len >= nrow(mat)) {
expect_true(nrow(result) == nrow(mat))
} else {
expect_true(nrow(result) == test_len)
}
}
})
# test various prior/bayesianSetup print outputs
test_that("test bayesianSetup and prior print functions",{
prior = createPrior(sampler = function(n=1) return(cbind(rnorm(n),rnorm(n), rnorm(n))))
ll = testDensityMultiNormal
expect_output(print(createBayesianSetup(likelihood = ll, lower = c(-10,3), upper =c(10,3))))
expect_output(print(createBayesianSetup(likelihood = ll, prior = prior )))
expect_output(print(createBayesianSetup(likelihood = ll, prior = prior, names = c("A","B","C"))))
expect_error(print(createBayesianSetup(likelihood = ll)))
expect_output(print(createPrior(sampler = function(n=1) return(cbind(rnorm(n),rnorm(n), rnorm(n))))))
expect_output(print(createUniformPrior(lower = c(0,0), upper = c(0,5))))
expect_output(print(createTruncatedNormalPrior(c(0,0),c(0.4,5), lower = c(-2,-2), upper = c(1,1))))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.