Nothing
#' Linear regression using MLR-MR algorithm
#'
#' Linear regression for Big Data using MLR-MR algorithm to perform lm regression with big data : https://isglobal-brge.github.io/Master_Modelling/dealing-with-big-data-in-r.html#linear-regression-for-big-data
#'
#' @export
#'
#' @param Y, numerical matrix column with response variable
#' @param model, numerical matrix with paired observations of the predictor variable X
#' @param blocks, integer with number of blocks we want to split matrix if null matrix is splited in blocks as maximum of 1000 variables per block
#' @param threads, threads (optional) only if bparal = true, number of concurrent threads in parallelization if threads is null then threads = maximum number of threads available
#' @return Lineal regression coefficients
#' @examples
#'
#' \dontrun{
#' library(BigDataStatMeth)
#' data(mtcars)
#'
#' Y <- mtcars$mpg
#' X <- model.matrix(~ wt + cyl, data=mtcars)
#' m <- 4
#' res <- bdlm_paral( X, Y, m, 1)
#' res
#' }
#'
#'
bdlm_paral <- function( Y, model, blocks, threads = NULL)
{
res <- .Call('_BigDataStatMeth_bdMLR_MR', PACKAGE = 'BigDataStatMeth', model, Y, blocks, threads)
rownames(res) <- colnames(model)
colnames(res) <- c("coef.")
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.