R/result.R

#############################################Class BinarizationResult############################################
#This is the base class of all results of the binarization functions. It provides the basic methods show, print and 
#a method called plotBinarization. It also checks all created object for validity.
setClass(
    Class = "BinarizationResult", 
    representation = representation(
        originalMeasurements = "numeric",
        binarizedMeasurements = "integer", 
        threshold = "numeric",
        method = "character",
        p.value = "numeric"
    ),
    validity = function(object){
        #extract object slots
        omeasure <- object@originalMeasurements
        bmeasure <- object@binarizedMeasurements
        thresh <- object@threshold
        meth <- object@method
        p.value <- object@p.value
        
        
        #initialize the basic strings
        valid_methods <- c(
            "BASC A", 
            "BASC B", 
            "Scan Statistic", 
            "Edge Detector: First Edge", 
            "Edge Detector: Maximum Edge", 
            "k-Means"
        )
        for(i in seq(1, length(valid_methods))){
            valid_methods_string <- ifelse(i==1, sprintf("\"%s\"", valid_methods[i]), sprintf("%s, \"%s\"", valid_methods_string, valid_methods[i]))
        }
        
        #initialize the critical error messages
        critical_invalid_strings <- c(
            "'originalMeasurements' isn't set!",
            "'binarizedMeasurements' isn't set!",
            "'threshold' isn't set!",
            "'method' isn't set!",
            "'p.value' isn't set!"
        )
        #check object for critical errors
        critical_invalid <- c(
            !length(omeasure),
            !length(bmeasure),
            !length(thresh),
            !length(meth),
            !length(p.value)
        )
        #if critical error occured return the corresponding error messages
        if (sum(as.integer(critical_invalid))){
            return(critical_invalid_strings[which(critical_invalid)])
        }
        
        #initialize the weak error messages
        weak_invalid_strings <- c(
            "Only zeros and ones are valid values for 'binarizedMeasurements'.",
            sprintf("'method' must be element of {%s}, but it is \"%s\".", valid_methods_string, as.character(meth)),
            "Length of original and binarized Measurements must be the same.",
            sprintf("'threshold' must be within the borders of the original values, which is the interval [%f, %f], but it is %f.", min(omeasure), max(omeasure), thresh),
            "'p.value' must be in range [0,1]."
        )
        #check object for weak errors
        weak_invalid <- c(
            length(which(bmeasure > 1)) || length(which(bmeasure < 0)),
            length(which(valid_methods == meth)) < 1,
            length(bmeasure) != length(omeasure),
            thresh < min(omeasure) || thresh > max(omeasure),
            (!is.na(p.value) && (p.value < 0 || p.value > 1))
        )
        #if weak error occured return the corresponding error messages
        if (sum(as.integer(weak_invalid))){
            return(weak_invalid_strings[which(weak_invalid)])
        }
        
        #object is valid
        return(TRUE)
    }
)

#This method prints the last three slots out to console (binarizedMeasurements is limited to 10 values). It is called
#when creating an object without an assignment or by only typing the name of a BinarizationResult-object at console.
setMethod(
    f = "show",
    signature = "BinarizationResult",
    definition = function(object){
        cat("Method: ", object@method, "\n",sep="")
        if (length(object@binarizedMeasurements) <= 10)
            cat("\nBinarized vector: [ ", paste(object@binarizedMeasurements, collapse=" "),
                " ]\n",sep="")
        else
            cat("\nBinarized vector: [ ",paste(object@binarizedMeasurements[1:10], collapse=" "), 
                " ...]\n",sep="")
        cat("\nThreshold: ", object@threshold, "\n", sep="")    
        if (!is.na(object@p.value))
          cat("\np value: ", object@p.value, "\n", sep="")                    
    }
)

#setGeneric(
#    name = "plot",
#    def = function(x, twoDimensional=FALSE, showLegend=TRUE, showThreshold=TRUE, ...){
#        standardGeneric("plot")
#    }
#)
setGeneric("plot", useAsDefault = plot)

#This Method plots the computed binarization in a one- or two-dimensional way.
setMethod(
    f = "plot",
    signature = c("BinarizationResult"),
    definition = function(x, twoDimensional=FALSE, showLegend=TRUE, showThreshold=TRUE, ...)
    {
        if (twoDimensional)
          plot(1:length(x@binarizedMeasurements), x, showLegend=showLegend, showThreshold=showThreshold, ...)
        else
        {
          #extract the base values of x
          vect_length <- length(x@originalMeasurements)
          min_val <- min(x@originalMeasurements) #floor(min(c(x@originalMeasurements,0)))
          max_val <- max(x@originalMeasurements) #ceiling(max(c(x@originalMeasurements,0)))
          
          #get the ... argument into a list
          args <- list(...)
          
          #check for several standard graphic parameters and if they aren't set, set them to default values
          if (is.null(args$ylab))
              args$ylab <- ""
          if (is.null(args$xlab))
              args$xlab <- ""
          if (is.null(args$lty))
             args$lty <- 2            
              
          if (is.null(args$pch)){
              args$pch <- x@binarizedMeasurements
          }
          else 
          if (length(args$pch) == 2)
          {
              pchs <- args$pch
              args$pch <- rep(pchs[1], length(x@binarizedMeasurements))
              args$pch[as.logical(x@binarizedMeasurements)] <- rep(pchs[2], sum(x@binarizedMeasurements))
          }
          
          col <- args$col
          
          if (is.null(col))
          {
              col <- c("red","green","black")
          }
          if (length(col) == 2 || length(col) == 3)
          {
              args$col <- rep(col[1], length(x@binarizedMeasurements))
              args$col[as.logical(x@binarizedMeasurements)] <- rep(col[2], sum(x@binarizedMeasurements))
              if (length(col) == 2)
                col <- c(col,"black")
          }
          
          if (is.null(args$type))
              args$type <- "p"
              
          if (is.null(args$yaxt))
            args$yaxt="n"

          #plotting the axes shouldn't be controlled by standard plot function
          #this method does it later
          #args$axes <- FALSE
                    
          #check for the limit standard graphic parameters and if they aren't set, set them to default values
          if (is.null(args$xlim))
              args$xlim <- c(min_val,max_val)
          if (is.null(args$ylim))
              args$ylim <- c(-0.1,0.1)
          
          #set the point coordinates
          args$x <- x@originalMeasurements
          args$y <- rep(0,vect_length)
          
          #plot them
          do.call("plot", args)
          
          #plot the threshold as line
          if (as.logical(showThreshold))
          {
              par(new=TRUE)
              largs <- list(...)
              
              if (is.null(largs$lty))
                largs$lty <- 2
              
              if (length(col) == 3)
                largs$col <- col[3]
              else
                largs$col <- "black"
              do.call("abline", c(largs,v=x@threshold))
          }
          
          #if axes isn't set or TRUE plot the x-axis
          #if (is.null(list(...)$axes) || as.logical(list(...)$axes) || list(...)$yaxt != "n")
          #{
          #    if (is.null(args$lwd))
          #    {
          #        lwd <- 1
          #    }
          #    else
          #    {
          #        lwd <- args$lwd
          #    }
          #    at <- round(seq(min_val,max_val,by=(max_val-min_val)/5),1)
          #    axis(1, at=at, lwd=lwd, pos=-0.01)
          #    #axis(1, at=at, lwd=lwd, pos=-0.05)#c(min_val,-10))
          #    #axis(1, at=at, lwd=lwd, pos=-0.1)#c(min_val,-10))
          #}
          
          if (as.logical(showLegend))
          {
              if (is.null(args$lwd))
              {
                  lwd <- 1
              }
              else{
                  lwd <- args$lwd
              }
              if (as.logical(showThreshold))
              {
                  if (is.null(args$pch)){
                      pch <- c(0,1,NA)
                  }
                  else
                  if (length(args$pch) > 2)
                  {
                    pch <- c(15, 16, NA)
                  }
                  else{
                      pch <- c(unique(args$pch), NA)
                  }
                  names <- c("zeros", "ones", "threshold")
                  lty <- c(NA, NA, args$lty[1])
              }
              else
              {
                  if (is.null(args$pch))
                  {
                      pch <- c(0,1)
                  }
                  else
                  if (length(args$pch) > 2)
                  {
                    pch <- c(15, 16)
                  }
                  else{
                      pch <- unique(args$pch)
                  }
                  names <- c("zeros", "ones")
                  lty <- c(NA, NA)
                  #if (is.null(args$col)){
                  #    col <- "black"
                  #}
                  #else if (length(args$col) < 3){
                  #    col <- args$col
                  #}
                  #else{
                  #    col <- args$col[1:2]
                  #}
              }

              legend("topleft", names, pch=pch,
                  lty=lty, inset=c(0.05, 0.05), bty="n", cex=0.8, lwd=lwd, col=col)
          }
       }
    }
)

setMethod(
    f = "plot",
    signature = c("numeric","BinarizationResult"),
    definition = function(x, y, showLegend=TRUE, showThreshold=TRUE, ...)
    {
        #extract the base values of y
        vect_length <- length(y@originalMeasurements)
        min_val <- min(y@originalMeasurements) 
        max_val <- max(y@originalMeasurements) 
        
        #get the ... argument into a list
        args <- list(...)
        
        #check for several standard graphic parameters and if they aren't set, set them to default values
        if (is.null(args$ylab))
            args$ylab <- ""
        if (is.null(args$xlab))
            args$xlab <- ""
        if (is.null(args$lty))
           args$lty <- 2
        if (is.null(args$cex.axis))
           args$cex.axis <- par("cex.axis")
        if (is.null(args$cex.lab))
           args$cex.lab <- par("cex.lab")   
            
        if (is.null(args$pch))
        {
            args$pch <- y@binarizedMeasurements
        }
        else 
        if (length(args$pch) == 2)
        {
            pchs <- args$pch
            args$pch <- rep(pchs[1], length(y@binarizedMeasurements))
            args$pch[as.logical(y@binarizedMeasurements)] <- rep(pchs[2], sum(y@binarizedMeasurements))
        }
        
        col <- args$col
        
        if (is.null(col)){
            col <- c("red","green","black")
        }
        if (length(col) == 2 || length(col) == 3){
            args$col <- rep(col[1], length(y@binarizedMeasurements))
            args$col[as.logical(y@binarizedMeasurements)] <- rep(col[2], sum(y@binarizedMeasurements))
            if (length(col) == 2)
              col <- c(col,"black")
        }
        
        if (is.null(args$type))
            args$type <- "p"

        #plotting the axes shouldn't be controlled by standard plot function
        #this method does it later
        #args$axes <- FALSE
        args$xaxt="n"
        
        #maxx is the minimal value >= vect_length and dividable by vect_length DIV 5
        #(for example: if vect_length = 11 => maxx is 12 and if vect_length = 19 => maxx is 21)
        #maxx <- ifelse(vect_length%%5==0, vect_length, vect_length%/%5*6)
        #while(maxx < vect_length)
        #    maxx <- maxx + vect_length%/%5
        
        #check for the limit standard graphic arguments. if not set set them to default values
        #if (is.null(args$xlim))
        #    args$xlim <- c(0, maxx)
        #if (is.null(args$ylim))
        #    args$ylim <- c(min_val, max_val)
        
        #plot the binarization
        args$x <- x
        #seq(along = x@originalMeasurements)
        args$y <- y@originalMeasurements
        print(args)
        do.call("plot", args)
        
        
        #plot the threshold as line
        if (as.logical(showThreshold))
        {
            par(new=TRUE)
            largs <- list(...)
            
            if (is.null(largs$lty))
              largs$lty <- 2
            
            if (length(col) == 3)
                largs$col <- col[3]
            else
                largs$col <- "black"
                
            do.call("abline", c(largs,h=y@threshold))
        }
        
        #if axes isn't set or TRUE plot the x and y axis according to maxx, min_val, max_val
        if (is.null(list(...)$axes) || as.logical(list(...)$axes) || list(...)$xaxt != "n")
        {
          if (is.null(args$lwd))
          {
                lwd <- 1
          }
          else
          {
              lwd <- args$lwd
          }
          axis(1, at=x, lwd=lwd, cex.axis=args$cex.axis, cex.lab=args$cex.lab)
        }

      if (as.logical(showLegend))
      {
          if (is.null(args$lwd))
          {
              lwd <- 1
          }
          else{
              lwd <- args$lwd
          }
          if (as.logical(showThreshold))
          {
              if (is.null(args$pch)){
                  pch <- c(0,1,NA)
              }
              else
              if (length(args$pch) > 2)
              {
                pch <- c(15, 16, NA)
              }
              else{
                  pch <- c(unique(args$pch), NA)
              }
              names <- c("zeros", "ones", "threshold")
              lty <- c(NA, NA, args$lty[1])
          }
          else
          {
              if (is.null(args$pch))
              {
                  pch <- c(0,1)
              }
              else
              if (length(args$pch) > 2)
              {
                pch <- c(15, 16)
              }
              else{
                  pch <- unique(args$pch)
              }
              names <- c("zeros", "ones")
              lty <- c(NA, NA)
          }

          legend("topleft", names, pch=pch,
              lty=lty, inset=c(0.05, 0.05), bty="n", cex=0.8, lwd=lwd, col=col)
        }
    }
)

#This method prints the last three slots out to console
setMethod(
    f = "print",
    signature = "BinarizationResult",
    definition = function(x){
        cat("Method: ", x@method, "\n", sep="")
        cat("\nThreshold: ", x@threshold, "\n", sep="")
        cat("\nBinarized vector: [ ", paste(x@binarizedMeasurements, collapse=" "),
            " ]\n", sep="")
        if (!is.na(x@p.value))
          cat("\np value: ",x@p.value,"\n", sep="")
    }
)


#############################################Class BASCResult##############################################
#This is the result class for the two BASC algorithms. It provides an additional method called plotStepFunctions and is
#derived from the BinarizationResult class.
setClass(
    Class = "BASCResult", 
    representation = representation(
        intermediateSteps = "matrix",
        intermediateHeights = "matrix",
        intermediateStrongestSteps = "integer"
    ),
    contains = "BinarizationResult",
    validity = function(object){
        #extract relevant object slots
        isteps <- object@intermediateSteps
        iheights <- object@intermediateHeights
        istrsteps <- object@intermediateStrongestSteps
        omeasure <- object@originalMeasurements
        
        #initialize the critical error messages
        critical_invalid_strings <- c(
            "'intermediateSteps' isn't set!",
            "'intermediateHeights' isn't set!",
            "'intermediateStrongestSteps' isn't set!"
        )
    
        #check object for critical errors
        critical_invalid <- c(
            !length(isteps),
            !length(iheights),
            !length(istrsteps)
        )
        #if critical error occured return the corresponding error messages
        if (sum(as.integer(critical_invalid))){
            return(critical_invalid_strings[which(critical_invalid)])
        }
        
        #initialize weak error messages
        weak_invalid_strings <- c(
            "'intermediateSteps' and 'intermediateHeights' must have the same dimensionality.",
            "'intermediateStrongestSteps' must have the same length as the number of rows of 'intermediateSteps'.",
            "The values of 'intermediateSteps' must be in range [0, #Measurements].",
            "The values of 'intermediateStrongestSteps' must be in range [1, #Measurements]."
        )
        
        #check object for weak errors
        weak_invalid <- c(
            as.logical(sum(dim(isteps) != dim(iheights))),
            length(istrsteps) != nrow(isteps),
            (sum(isteps < 0) || sum(isteps > length(omeasure))),
            (sum(istrsteps < 1) || sum(istrsteps > length(omeasure)))
        )
        #if weak error occured return the corresponding error messages
        if (sum(as.integer(weak_invalid))){
            return(weak_invalid_strings[which(weak_invalid)])
        }
        
        #object is valid
        return(TRUE)
    }
)

setGeneric(
    name = "plotStepFunctions",
    def = function(x, showLegend=TRUE, connected=FALSE, withOriginal=TRUE, ...){
        standardGeneric("plotStepFunctions")
    }
)
#This method plots all the computed optimal step functions with n steps in one diagram. These step functions are formed
#by the two BASC algorithms and are used to determine the optimal jumping point and are also used to calculate the
#P-Value.
setMethod(
    f = "plotStepFunctions",
    signature = "BASCResult",
    definition = function(x, showLegend=TRUE, connected=FALSE, withOriginal=TRUE, ...){
        #check the input BASCResult-Object
        if (ncol(x@intermediateSteps) == 0 || nrow(x@intermediateSteps) == 0)
            stop("intermediateSteps has no values to plot.")
        if (ncol(x@intermediateHeights) == 0 || nrow(x@intermediateHeights) == 0)
            stop("intermediateHeights has no values to plot.")
        if (length(x@intermediateStrongestSteps) == 0)
            stop("intermediateStrongestSteps has no values to plot.")
            
        #get the value-count
        vect_count <- length(x@originalMeasurements)
        
        #steps is a matrix with all the jump indices computed by the C-function concatenated with
        #1:vect_count which is used for plotting the original step-function
        if (as.logical(withOriginal)){
            steps <- matrix(nrow=nrow(x@intermediateSteps)+1, ncol = vect_count, data = rep(0,(nrow(x@intermediateSteps)+1) * vect_count))
            steps[1:(nrow(steps)-1),1:ncol(x@intermediateSteps)] <- x@intermediateSteps
            steps[nrow(steps),] <- seq(along=x@originalMeasurements)
        }
        else{
            steps <- matrix(nrow=nrow(x@intermediateSteps), ncol = vect_count, data = rep(0,nrow(x@intermediateSteps) * vect_count))
            steps[1:nrow(steps),1:ncol(x@intermediateSteps)] <- x@intermediateSteps
        }
        
        #heights is a matrix with all the jump heights computed by the C-function concatenated with
        #the jump heights of the original step-function
        if (as.logical(withOriginal)){
            heights <- matrix(nrow=nrow(x@intermediateSteps)+1, ncol = vect_count, data = rep(0,(nrow(x@intermediateSteps)+1) * vect_count))
            heights[1:(nrow(heights)-1),1:ncol(x@intermediateSteps)] <- x@intermediateHeights
            heights[nrow(heights),] <- c(diff(sort(x@originalMeasurements)), 0)
        }
        else{
            heights <- matrix(nrow=nrow(x@intermediateSteps), ncol = vect_count, data = rep(0,nrow(x@intermediateSteps) * vect_count))
            heights[1:nrow(heights),1:ncol(x@intermediateSteps)] <- x@intermediateHeights
        }
        
        heights <- t(apply(heights,1,function(x)x/sum(x)))
        
        #the maximal y-value is calculated. y starts at 1, all the individual jump-heights are added and
        #between every single step-function there's 0.5 free space
        maxy <- nrow(steps) * 0.5 + sum(heights) + 1
        
        # #maxx is the minimal value >= vect_length and dividable by vect_length DIV 5
        # #(for example: if vect_length = 11 => maxx is 12 and if vect_length = 19 => maxx is 21)
        #maxx <- ifelse((vect_count%%5)==0, vect_count, (vect_count%/%5)*6)
        #while(maxx < vect_count)
        #    maxx <- maxx + (vect_count%/%5)
        
        maxx <- vect_count
            
        #calculate the coordinates of the lines of the step-functions
        lines <- sapply(
            #loop over the rows of steps from last row to first row
            rev(seq(along = steps[,1])), 
            function(i, st, he){
                #calculate the base y-value of the current "line"
                #it is calculated like maxy but only for the first i lines.
                cury <- ifelse(i < nrow(he), sum(he[seq(i + 1, nrow(he)),]) + (nrow(he) - i + 1) * 0.5, 0.5)
                #cury <- ifelse(i < nrow(he), sum(he[seq(i + 1, nrow(he)),]), 0.5)
                
                #get the current steps and heights row
                cur_steps <- st[i, st[i,] > 0]
                cur_heights <- he[i,]
                
                #count is the current number of single lines of the current step functions
                #except the last line which is always added directly before the return statement 
                count <- min(vect_count-1, length(cur_steps))
                if (!as.logical(connected))
                    lines <- matrix(nrow=2, ncol=2+4*count)
                else
                    lines <- matrix(nrow=2, ncol=2+2*count)
                #construct the coordinates of the lines first and last x,y-pair will be added 
                #after the next block
                lines[,seq(2, ncol(lines)-1)] <- matrix(
                    sapply(
                        seq(1, count), 
                        function(j,s,h,base){
                            #the NAs are neccessary because vertical lines direct at a step shouldn't be 
                            #plotted
                            if (!as.logical(connected)){
                                result <- matrix(ncol=4, nrow=2, rep(NA,8))
                                result[1,c(1,4)] <- rep(s[j], 2)
                                result[2, 1] <- ifelse(j==1, base, base + sum(h[1:j-1]))
                                result[2, 4] <- base + sum(h[1:j])
                            }
                            else{
                                result <- matrix(ncol=2, nrow=2, rep(NA,4))
                                result[1,c(1,2)] <- rep(s[j], 2)
                                result[2, 1] <- ifelse(j==1, base, base + sum(h[1:j-1]))
                                result[2, 2] <- base + sum(h[1:j])
                            }
                            return(result)
                        }, 
                        cur_steps, 
                        cur_heights, 
                        cury
                    )
                )
                #set the first and the last coordinates pair and return all the coordinates for the
                #current step-function
                lines[, 1] <- c(0, cury)
                lines[, ncol(lines)] <- c(vect_count, lines[2, ncol(lines) - 1])               
                return(lines)
            }, 
            steps, 
            heights
        )
        
        #calculate the coordinates for the lines of the respective strongest steps
        if (as.logical(withOriginal)){
            ncol <- 3 * (nrow(steps) - 1)
            sequence <- rev(seq(1, nrow(steps) - 1))
        }
        else{
            ncol <- 3 * nrow(steps)
            sequence <- rev(seq(1, nrow(steps)))
        }
        strongestLines <- matrix(
            nrow = 2, 
            ncol = ncol,
            data = sapply(
                sequence,
                function(i, st, he, x, l){
                    #get the current values
                    cur_steps <- st[i, st[i,] > 0]
                    cur_heights <- he[i,]
                    cur_l <- l[[length(l) - i + 1]]
                            
                    #get the coordinates from the current values
                    result <- matrix(nrow = 2, ncol = 3, data = rep(NA, 6))
                    result[1,c(2,3)] <- rep(x@intermediateStrongestSteps[i], 2)
                    result[2,2] <- cur_l[2, which(cur_l[1,] == x@intermediateStrongestSteps[i])[1]]
                    result[2,3] <- cur_l[2, which(cur_l[1,] == x@intermediateStrongestSteps[i])[2]]
                    
                    return(result)
                }, 
                steps, 
                heights, 
                x, 
                lines
            )
        )
        
        #insert NA's at the strongestStep positions, because this lines are plotted seperatly
        if (as.logical(connected)){
            for(i in seq(along=lines)){
                l <- lines[[i]]
                matched <- match(strongestLines[2,],l[2,])
                matched <- matched[!is.na(matched)]
                if (length(matched) > 0){
                    ind <- max(matched)
                    l <- matrix(nrow=2,data=c(l[,1:(ind-1)],NA,NA,l[,-(1:(ind-1))]))
                    lines[[i]] <- l
                }
            }
        }
        
        #put the additional arguments in args
        args <- list(...)
        
        #check several standard graphics parameter and set them to default values if they aren't
        #set yet
        if (is.null(args$xlim))
            args$xlim <- c(0, maxx)
        if (is.null(args$ylim))
            args$ylim <- c(0, maxy*1.01)
        if (is.null(args$pch))
            args$pch <- c(1,20)
        if (is.null(args$type))
            args$type <- "o"
        else
            args$type <- args$type[1]   #if args$type is a vector then take first element for standard-lines
                                        #and the second element for strongest-step lines others will be ignored
        if (is.null(args$cex))
            args$cex <- c(1,1.2)
        if (is.null(args$ylab))
            args$ylab <- ""
        if (is.null(args$xlab))
            args$xlab <- ""
        if (is.null(args$lty))
            args$lty <- 1
        else
            args$lty <- args$lty[1]     #same handling as args$type
        if (!is.null(args$col))
            args$col <- args$col[1]     #same handling as args$type
        #drawing axes will be handled later by this function and not by the standard plot function
        args$axes <- FALSE
        
        #plot the step functions
        lapply(
            lines, 
            function(l){
                args$x <- l[1,]
                args$y <- l[2,]
                
                do.call("plot", args)
                #par(new=TRUE) is neccessary beacause the old lines shouldn't be deleted
                par(new=TRUE)
            }
        )
        
        #setup args for plotting strongest steps        
        args$x <- strongestLines[1,]
        args$y <- strongestLines[2,]
        if (is.null(list(...)$type))             
            args$type <- "l"
        else if (length(list(...)$type) > 1)
            args$type <- list(...)$type[2]
        else
            args$type <- list(...)$type
            
        if (is.null(list(...)$lty))
            args$lty <- 2
        else if (length(list(...)$lty) > 1)
            args$lty <- list(...)$lty[2]
        else
            args$lty <- list(...)$lty
            
        if (!is.null(list(...)$col) & length(list(...)$col) > 1){
            args$col <- list(...)$col[2]
        }
        
        #plot the strongest steps of the step functions
        do.call("plot", args)
        
        if (is.null(list(...)$lwd))
            lwd <- 1
        else
            lwd <- list(...)$lwd
        
        #if axes isn't set or set to TRUE then plot the x-axes
        if (is.null(list(...)$axes) || as.logical(list(...)$axes)){
            axis(1, pos=0, at=seq(0,maxx,by=(vect_count%/%5)), lwd = lwd)
        }
        
        #if showLegend is TRUE plot a legend
        if (as.logical(showLegend)){
            #if lty wasn't set take the default values for the line types else take the first
            #two values (if possible) for the line type
            if (is.null(list(...)$lty))
                lty <- c(1,2) 
            else if (length(list(...)$lty) == 1)
                lty <- list(...)$lty
            else
                lty <- list(...)$lty[c(1,2)]
                
            if (is.null(list(...)$col))
                col <- "black"
            else if (length(list(...)$col) == 1)
                col <- list(...)$col
            else
                col <- list(...)$col[1:2]
            
            legend("topleft", c("steps","strongest steps"), lty=lty, col=col, inset=c(0.05,0), bty="n", cex=0.8, lwd=lwd)
        }
    }
)

Try the Binarize package in your browser

Any scripts or data that you put into this service are public.

Binarize documentation built on April 4, 2023, 5:14 p.m.