Nothing
binomial.localisedCARMCMC <- function(Y, failures, trials, offset, X.standardised, G, Gstar, W, K, p, burnin, n.sample, thin, MALA, n.beta.block, list.block, prior.mean.beta, prior.var.beta, prior.tau2, prior.delta, verbose, chain)
{
# Rcpp::sourceCpp("src/CARBayes.cpp")
# source("R/common.functions.R")
# library(spdep)
# library(truncnorm)
##########################################
#### Generate the initial parameter values
##########################################
#### Generate initial values for each chain
if(p==0)
{
regression.vec <- rep(0, K)
beta <- NA
}else
{
mod.glm <- glm(cbind(Y, failures)~X.standardised, offset=offset, family="quasibinomial")
beta.mean <- mod.glm$coefficients[-1]
beta.sd <- sqrt(diag(summary(mod.glm)$cov.scaled))[-1]
beta <- rnorm(n=length(beta.mean), mean=beta.mean, sd=beta.sd)
regression.vec <- X.standardised %*% beta
}
theta.hat <- Y / trials
theta.hat[theta.hat==0] <- 0.01
theta.hat[theta.hat==1] <- 0.99
res.temp <- log(theta.hat / (1 - theta.hat)) - regression.vec - offset
clust <- kmeans(res.temp,G)
lambda <- clust$centers[order(clust$centers)]
Z <- rep(1, K)
for(j in 2:G)
{
Z[clust$cluster==order(clust$centers)[j]] <- j
}
delta <- runif(1,1, min(2, prior.delta))
res.sd <- sd(res.temp, na.rm=TRUE)/5
phi <- rnorm(n=K, mean=rep(0,K), sd = res.sd)
for(i in 1:G)
{
phi[which(Z==i)] <- phi[which(Z==i)] - mean(phi[which(Z==i)])
}
tau2 <- var(phi) / 10
###################################################################
#### Compute the fitted values based on the current parameter values
####################################################################
lp <- lambda[Z] + phi + regression.vec + offset
prob <- exp(lp) / (1 + exp(lp))
fitted <- trials * prob
########################################
#### Set up the MCMC model run quantities
#########################################
#### Matrices to store samples
n.keep <- floor((n.sample - burnin)/thin)
samples.phi <- array(NA, c(n.keep, K))
samples.tau2 <- array(NA, c(n.keep, 1))
samples.Z <- array(NA, c(n.keep, K))
samples.lambda <- array(NA, c(n.keep, G))
samples.delta <- array(NA, c(n.keep, 1))
samples.loglike <- array(NA, c(n.keep, K))
samples.fitted <- array(NA, c(n.keep, K))
#### Metropolis quantities
if(p>0)
{
samples.beta <- array(NA, c(n.keep, p))
accept <- rep(0,8)
proposal.sd.beta <- 0.01
}else
{
accept <- rep(0,6)
}
proposal.sd.phi <- 0.1
proposal.sd.delta <- 0.1
proposal.sd.lambda <- 0.01
tau2.posterior.shape <- prior.tau2[1] + 0.5 * K
##################################
#### Set up the spatial quantities
##################################
#### CAR quantities
W.quants <- common.Wcheckformat(W)
W <- W.quants$W
W.triplet <- W.quants$W.triplet
n.triplet <- W.quants$n.triplet
W.triplet.sum <- W.quants$W.triplet.sum
n.neighbours <- W.quants$n.neighbours
W.begfin <- W.quants$W.begfin
#### Start timer
if(verbose)
{
cat("\nMarkov chain", chain, "- generating", n.keep, "post burnin and thinned samples.\n", sep = " ")
progressBar <- txtProgressBar(style = 3)
percentage.points<-round((1:100/100)*n.sample)
}else
{
percentage.points<-round((1:100/100)*n.sample)
}
######################
#### Run an MCMC chain
######################
#### Create the MCMC samples
for(j in 1:n.sample)
{
###################
## Sample from beta
###################
if(p>0)
{
offset.temp <- phi + offset + lambda[Z]
if(MALA)
{
temp <- binomialbetaupdateMALA(X.standardised, K, p, beta, offset.temp, Y, failures, trials, prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta, list.block)
}else
{
temp <- binomialbetaupdateRW(X.standardised, K, p, beta, offset.temp, Y, failures, prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta, list.block)
}
beta <- temp[[1]]
accept[7] <- accept[7] + temp[[2]]
accept[8] <- accept[8] + n.beta.block
regression.vec <- X.standardised %*% beta
}else
{}
##################
## Sample from phi
##################
phi.offset <- regression.vec + offset + lambda[Z]
temp1 <- binomialcarupdateRW(Wtriplet=W.triplet, Wbegfin=W.begfin, Wtripletsum=W.triplet.sum, nsites=K, phi=phi, tau2=tau2, y=Y, failures=failures, phi_tune=proposal.sd.phi, rho=1, offset=phi.offset)
phi <- temp1[[1]]
for(i in 1:G)
{
phi[which(Z==i)] <- phi[which(Z==i)] - mean(phi[which(Z==i)])
}
accept[1] <- accept[1] + temp1[[2]]
accept[2] <- accept[2] + K
##################
## Sample from tau2
##################
temp2 <- quadform(W.triplet, W.triplet.sum, n.triplet, K, phi, phi, 1)
tau2.posterior.scale <- temp2 + prior.tau2[2]
tau2 <- 1 / rgamma(1, tau2.posterior.shape, scale=(1/tau2.posterior.scale))
#####################
## Sample from lambda
#####################
proposal.extend <- c(-1000, lambda, 1000)
lambda.extend <- c(-1000, lambda, 1000)
for(i in 1:G)
{
proposal.extend[(i+1)] <- rtruncnorm(n=1, a=proposal.extend[i], b=proposal.extend[(i+2)], mean=lambda[i], sd=proposal.sd.lambda)
}
proposal <- proposal.extend[2:(G+1)]
lp.current <- lambda[Z] + phi + regression.vec + offset
lp.proposal <- proposal[Z] + phi + regression.vec + offset
prob.current <- exp(lp.current) / (1 + exp(lp.current))
prob.proposal <- exp(lp.proposal) / (1 + exp(lp.proposal))
prob1 <- sum(Y * (log(prob.proposal) - log(prob.current)) + failures * (log(1-prob.proposal) - log(1-prob.current)))
prob <- exp(prob1)
if(prob > runif(1))
{
lambda <- proposal
accept[3] <- accept[3] + 1
}else
{}
accept[4] <- accept[4] + 1
################
## Sample from Z
################
Z.proposal <- sample(1:G, size=K, replace=TRUE)
prior <- delta * ((Z - Gstar)^2 - (Z.proposal-Gstar)^2)
lp.current <- lambda[Z] + phi + regression.vec + offset
lp.proposal <- lambda[Z.proposal] + phi + regression.vec + offset
prob.current <- exp(lp.current) / (1 + exp(lp.current))
prob.proposal <- exp(lp.proposal) / (1 + exp(lp.proposal))
like <- Y * (log(prob.proposal) - log(prob.current)) + failures * (log(1-prob.proposal) - log(1-prob.current))
prob <- exp(like + prior)
test <- prob> runif(K)
Z[test] <- Z.proposal[test]
####################
## Sample from delta
####################
proposal.delta <- rtruncnorm(n=1, a=1, b=prior.delta, mean=delta, sd=proposal.sd.delta)
prob1 <- sum((Z-Gstar)^2) * (delta - proposal.delta)
prob2 <- K * log(sum(exp(-delta *(1:G - Gstar)^2))) - K * log(sum(exp(-proposal.delta *(1:G - Gstar)^2)))
hastings <- log(dtruncnorm(x=delta, a=1, b=prior.delta, mean=proposal.delta, sd=proposal.sd.delta)) - log(dtruncnorm(x=proposal.delta, a=1, b=prior.delta, mean=delta, sd=proposal.sd.delta))
prob <- exp(prob1 + prob2 + hastings)
if(prob > runif(1))
{
delta <- proposal.delta
accept[5] <- accept[5] + 1
}else
{
}
accept[6] <- accept[6] + 1
#########################
## Calculate the deviance
#########################
lp <- lambda[Z] + phi + regression.vec + offset
prob <- exp(lp) / (1 + exp(lp))
fitted <- trials * prob
loglike <- dbinom(x=Y, size=trials, prob=prob, log=TRUE)
###################
## Save the results
###################
if(j > burnin & (j-burnin)%%thin==0)
{
ele <- (j - burnin) / thin
samples.phi[ele, ] <- phi
samples.lambda[ele, ] <- lambda
samples.tau2[ele, ] <- tau2
samples.Z[ele, ] <- Z
samples.delta[ele, ] <- delta
samples.loglike[ele, ] <- loglike
samples.fitted[ele, ] <- fitted
if(p>0) samples.beta[ele, ] <- beta
}else
{
}
########################################
## Self tune the acceptance probabilties
########################################
if(ceiling(j/100)==floor(j/100) & j < burnin)
{
if(p>0)
{
if(p>2)
{
proposal.sd.beta <- common.accceptrates1(accept[7:8], proposal.sd.beta, 40, 50)
}else
{
proposal.sd.beta <- common.accceptrates1(accept[7:8], proposal.sd.beta, 30, 40)
}
proposal.sd.phi <- common.accceptrates1(accept[1:2], proposal.sd.phi, 40, 50)
proposal.sd.lambda <- common.accceptrates1(accept[3:4], proposal.sd.lambda, 20, 40)
proposal.sd.delta <- common.accceptrates2(accept[5:6], proposal.sd.delta, 40, 50, prior.delta/6)
accept <- rep(0,8)
}else
{
proposal.sd.phi <- common.accceptrates1(accept[1:2], proposal.sd.phi, 40, 50)
proposal.sd.lambda <- common.accceptrates1(accept[3:4], proposal.sd.lambda, 20, 40)
proposal.sd.delta <- common.accceptrates2(accept[5:6], proposal.sd.delta, 40, 50, prior.delta/6)
accept <- rep(0,6)
}
}else
{}
################################
## print progress to the console
################################
if(j %in% percentage.points & verbose)
{
setTxtProgressBar(progressBar, j/n.sample)
}
}
##### end timer
if(verbose)
{
close(progressBar)
}else
{}
############################################
#### Return the results to the main function
############################################
#### Compile the results
if(p>0)
{
chain.results <- list(samples.beta=samples.beta, samples.phi=samples.phi, samples.Z=samples.Z, samples.lambda=samples.lambda, samples.tau2=samples.tau2, samples.delta=samples.delta, samples.loglike=samples.loglike, samples.fitted=samples.fitted,
accept=accept)
}else
{
chain.results <- list(samples.phi=samples.phi, samples.Z=samples.Z, samples.lambda=samples.lambda, samples.tau2=samples.tau2, samples.delta=samples.delta, samples.loglike=samples.loglike, samples.fitted=samples.fitted,
accept=accept)
}
#### Return the results
return(chain.results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.