Nothing
gaussian.lerouxCARMCMC <- function(Y, offset, X.standardised, W, rho, fix.rho, K, p, which.miss, n.miss, burnin, n.sample, thin, prior.mean.beta, prior.var.beta, prior.tau2, prior.nu2, verbose, chain)
{
# Rcpp::sourceCpp("src/CARBayes.cpp")
# source("R/common.functions.R")
# library(spdep)
# library(truncnorm)
#
#
##########################################
#### Generate the initial parameter values
##########################################
#### Generate initial values for each chain
mod.glm <- lm(Y~X.standardised-1, offset=offset)
beta.mean <- mod.glm$coefficients
beta.sd <- sqrt(diag(summary(mod.glm)$cov.unscaled)) * summary(mod.glm)$sigma
beta <- rnorm(n=length(beta.mean), mean=beta.mean, sd=beta.sd)
res.temp <- Y - X.standardised %*% beta.mean - offset
res.sd <- sd(res.temp, na.rm=TRUE)/5
phi <- rnorm(n=K, mean=rep(0,K), sd=res.sd)
tau2 <- var(phi) / 10
nu2 <- tau2
###################################################################
#### Compute the fitted values based on the current parameter values
####################################################################
fitted <- as.numeric(X.standardised %*% beta) + phi + offset
Y.DA <- Y
########################################
#### Set up the MCMC model run quantities
#########################################
#### Matrices to store samples
n.keep <- floor((n.sample - burnin)/thin)
samples.beta <- array(NA, c(n.keep, p))
samples.phi <- array(NA, c(n.keep, K))
samples.tau2 <- array(NA, c(n.keep, 1))
samples.nu2 <- array(NA, c(n.keep, 1))
if(!fix.rho) samples.rho <- array(NA, c(n.keep, 1))
samples.loglike <- array(NA, c(n.keep, K))
samples.fitted <- array(NA, c(n.keep, K))
if(n.miss>0) samples.Y <- array(NA, c(n.keep, n.miss))
#### Metropolis quantities
accept <- rep(0,2)
proposal.sd.rho <- 0.02
tau2.posterior.shape <- prior.tau2[1] + 0.5*K
nu2.posterior.shape <- prior.nu2[1] + 0.5*K
##################################
#### Set up the spatial quantities
##################################
#### CAR quantities
W.quants <- common.Wcheckformat(W)
W <- W.quants$W
W.triplet <- W.quants$W.triplet
n.triplet <- W.quants$n.triplet
W.triplet.sum <- W.quants$W.triplet.sum
n.neighbours <- W.quants$n.neighbours
W.begfin <- W.quants$W.begfin
#### Create the determinant
if(!fix.rho)
{
Wstar <- diag(apply(W,1,sum)) - W
Wstar.eigen <- eigen(Wstar)
Wstar.val <- Wstar.eigen$values
det.Q <- 0.5 * sum(log((rho * Wstar.val + (1-rho))))
}else
{}
#### Check for islands
W.list<- mat2listw(W, style = "B")
W.nb <- W.list$neighbours
W.islands <- n.comp.nb(W.nb)
islands <- W.islands$comp.id
n.islands <- max(W.islands$nc)
if(rho==1) tau2.posterior.shape <- prior.tau2[1] + 0.5 * (K-n.islands)
#### Beta update quantities
data.precision.beta <- t(X.standardised) %*% X.standardised
if(length(prior.var.beta)==1)
{
prior.precision.beta <- 1 / prior.var.beta
}else
{
prior.precision.beta <- solve(diag(prior.var.beta))
}
#### Start timer
if(verbose)
{
cat("\nMarkov chain", chain, "- generating", n.keep, "post burnin and thinned samples.\n", sep = " ")
progressBar <- txtProgressBar(style = 3)
percentage.points<-round((1:100/100)*n.sample)
}else
{
percentage.points<-round((1:100/100)*n.sample)
}
######################
#### Run an MCMC chain
######################
#### Create the MCMC samples
for(j in 1:n.sample)
{
####################################
## Sample from Y - data augmentation
####################################
if(n.miss>0)
{
Y.DA[which.miss==0] <- rnorm(n=n.miss, mean=fitted[which.miss==0], sd=sqrt(nu2))
}else
{}
####################
## Sample from beta
####################
fc.precision <- prior.precision.beta + data.precision.beta / nu2
fc.var <- solve(fc.precision)
beta.offset <- as.numeric(Y.DA - offset - phi)
beta.offset2 <- t(X.standardised) %*% beta.offset / nu2 + prior.precision.beta %*% prior.mean.beta
fc.mean <- fc.var %*% beta.offset2
chol.var <- t(chol(fc.var))
beta <- fc.mean + chol.var %*% rnorm(p)
##################
## Sample from nu2
##################
fitted.current <- as.numeric(X.standardised %*% beta) + phi + offset
nu2.posterior.scale <- prior.nu2[2] + 0.5 * sum((Y.DA - fitted.current)^2)
nu2 <- 1 / rgamma(1, nu2.posterior.shape, scale=(1/nu2.posterior.scale))
####################
## Sample from phi
####################
offset.phi <- (Y.DA - as.numeric(X.standardised %*% beta) - offset) / nu2
phi <- gaussiancarupdate(Wtriplet=W.triplet, Wbegfin=W.begfin, W.triplet.sum, nsites=K, phi=phi, tau2=tau2, rho=rho, nu2=nu2, offset=offset.phi)
if(rho<1)
{
phi <- phi - mean(phi)
}
else
{
phi[which(islands==1)] <- phi[which(islands==1)] - mean(phi[which(islands==1)])
}
##################
## Sample from tau2
##################
temp2 <- quadform(W.triplet, W.triplet.sum, n.triplet, K, phi, phi, rho)
tau2.posterior.scale <- temp2 + prior.tau2[2]
tau2 <- 1 / rgamma(1, tau2.posterior.shape, scale=(1/tau2.posterior.scale))
##################
## Sample from rho
##################
if(!fix.rho)
{
proposal.rho <- rtruncnorm(n=1, a=0, b=1, mean=rho, sd=proposal.sd.rho)
temp3 <- quadform(W.triplet, W.triplet.sum, n.triplet, K, phi, phi, proposal.rho)
det.Q.proposal <- 0.5 * sum(log((proposal.rho * Wstar.val + (1-proposal.rho))))
logprob.current <- det.Q - temp2 / tau2
logprob.proposal <- det.Q.proposal - temp3 / tau2
hastings <- log(dtruncnorm(x=rho, a=0, b=1, mean=proposal.rho, sd=proposal.sd.rho)) - log(dtruncnorm(x=proposal.rho, a=0, b=1, mean=rho, sd=proposal.sd.rho))
prob <- exp(logprob.proposal - logprob.current + hastings)
#### Accept or reject the proposal
if(prob > runif(1))
{
rho <- proposal.rho
det.Q <- det.Q.proposal
accept[1] <- accept[1] + 1
}else
{
}
accept[2] <- accept[2] + 1
}else
{}
#########################
## Calculate the deviance
#########################
fitted <- as.numeric(X.standardised %*% beta) + phi + offset
loglike <- dnorm(Y, mean = fitted, sd = rep(sqrt(nu2),K), log=TRUE)
###################
## Save the results
###################
if(j > burnin & (j-burnin)%%thin==0)
{
ele <- (j - burnin) / thin
samples.beta[ele, ] <- beta
samples.phi[ele, ] <- phi
samples.nu2[ele, ] <- nu2
samples.tau2[ele, ] <- tau2
if(!fix.rho) samples.rho[ele, ] <- rho
samples.loglike[ele, ] <- loglike
samples.fitted[ele, ] <- fitted
if(n.miss>0) samples.Y[ele, ] <- Y.DA[which.miss==0]
}else
{
}
########################################
## Self tune the acceptance probabilties
########################################
if(ceiling(j/100)==floor(j/100) & j < burnin)
{
#### Update the proposal sds
if(!fix.rho)
{
proposal.sd.rho <- common.accceptrates2(accept[1:2], proposal.sd.rho, 40, 50, 0.5)
}
accept <- c(0,0)
}else
{
}
################################
## print progress to the console
################################
if(j %in% percentage.points & verbose)
{
setTxtProgressBar(progressBar, j/n.sample)
}
}
##### end timer
if(verbose)
{
close(progressBar)
}else
{}
############################################
#### Return the results to the main function
############################################
#### Compile the results
if(n.miss==0) samples.Y = NA
if(fix.rho) samples.rho=NA
chain.results <- list(samples.beta=samples.beta, samples.phi=samples.phi, samples.tau2=samples.tau2, samples.nu2=samples.nu2, samples.rho=samples.rho, samples.loglike=samples.loglike, samples.fitted=samples.fitted,
samples.Y=samples.Y, accept=accept)
#### Return the results
return(chain.results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.