Nothing
multinomial.glmMCMC <- function(Y, trials, offset, X.standardised, K, p, J, N.all, which.miss, n.miss, burnin, n.sample, thin, n.beta.block, list.block, prior.mean.beta, prior.var.beta, verbose, chain)
{
# Rcpp::sourceCpp("src/CARBayes.cpp")
# source("R/common.functions.R")
##########################################
#### Generate the initial parameter values
##########################################
#### Generate initial values for each chain
beta <- array(NA, c(p, (J-1)))
for(i in 2:J)
{
mod.glm <- glm(cbind(Y[ ,i], trials - Y[ ,i])~X.standardised-1, offset=offset[ ,(i-1)], family="quasibinomial")
beta.mean <- mod.glm$coefficients
beta.sd <- sqrt(diag(summary(mod.glm)$cov.scaled))
beta[ ,(i-1)] <- rnorm(n=p, mean=beta.mean, sd=beta.sd)
}
####################################################################
#### Compute the fitted values based on the current parameter values
####################################################################
regression <- X.standardised %*% beta
Y.DA <- Y
#### If only one element in Y is missing then fix it as we know the total number of trials
which.miss.row <- J-apply(which.miss,1,sum)
which.miss.1 <- which(which.miss.row==1)
if(length(length(which.miss.1))>0)
{
for(r in 1:length(which.miss.1))
{
which.miss[which.miss.1[r], is.na(Y[which.miss.1[r], ])] <- 1
Y[which.miss.1[r], is.na(Y[which.miss.1[r], ])] <- trials[which.miss.1[r]] - sum(Y[which.miss.1[r], ], na.rm=T)
}
n.miss <- sum(is.na(Y))
which.miss.row <- J-apply(which.miss,1,sum)
}else
{}
const.like <- lfactorial(trials[which.miss.row==0]) - apply(lfactorial(Y[which.miss.row==0, ]),1,sum)
K.present <- sum(which.miss.row==0)
#### Determine which rows have missing values
if(n.miss>0) which.miss.row2 <- which(which.miss.row>0)
########################################
#### Set up the MCMC model run quantities
#########################################
#### Matrices to store samples
n.keep <- floor((n.sample - burnin)/thin)
samples.beta <- array(NA, c(n.keep, (J-1)*p))
samples.loglike <- array(NA, c(n.keep, K.present))
samples.fitted <- array(NA, c(n.keep, N.all))
if(n.miss>0) samples.Y <- array(NA, c(n.keep, n.miss))
#### Metropolis quantities
accept.beta <- rep(0,2*(J-1))
proposal.sd.beta <- rep(0.01, (J-1))
#### Start timer
if(verbose)
{
cat("\nMarkov chain", chain, "- generating", n.keep, "post burnin and thinned samples.\n", sep = " ")
progressBar <- txtProgressBar(style = 3)
percentage.points<-round((1:100/100)*n.sample)
}else
{
percentage.points<-round((1:100/100)*n.sample)
}
######################
#### Run an MCMC chain
######################
#### Create the MCMC samples
for(j in 1:n.sample)
{
####################################
## Sample from Y - data augmentation
####################################
if(n.miss>0)
{
for(g in 1:length(which.miss.row2))
{
## Determine which row (area) of Y to update
row <- which.miss.row2[g]
## Compute the vector of probabilities for that row
lp <- c(0, regression[row, ] + offset[row, ])
prob <- exp(lp) / sum(exp(lp))
## Do the multinomial data augmentation
if(which.miss.row[row]==J)
{
## All the Ys are missing
Y.DA[row, ] <- as.numeric(rmultinom(n=1, size=trials[row], prob=prob))
}else
{
## Not all the Ys are missing
## Re-normalise the probabilities
prob[!is.na(Y[row, ])] <- 0
prob <- prob / sum(prob)
temp <- as.numeric(rmultinom(n=1, size=trials[row]-sum(Y[row, ], na.rm=T), prob=prob))
Y.DA[row, which.miss[row, ]==0] <- temp[which.miss[row, ]==0]
}
}
}else
{}
###################
## Sample from beta
###################
for(r in 1:(J-1))
{
temp <- multinomialbetaupdateRW(X.standardised, K, J, p, r, beta, offset, Y.DA, prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta[r], list.block, rep(0, K))
beta[ ,r] <- temp[[1]][ ,r]
accept.beta[r] <- accept.beta[r] + temp[[2]]
accept.beta[(r+J-1)] <- accept.beta[(r+J-1)] + n.beta.block
}
regression <- X.standardised %*% beta
#########################
## Calculate the deviance
#########################
lp <- regression + offset
lp <- cbind(rep(0,K), lp)
prob <- exp(lp) / apply(exp(lp),1,sum)
fitted <- prob * trials
loglike <- const.like + apply(Y[which.miss.row==0, ] * log(prob[which.miss.row==0, ]),1,sum)
###################
## Save the results
###################
if(j > burnin & (j-burnin)%%thin==0)
{
ele <- (j - burnin) / thin
samples.beta[ele, ] <- as.numeric(beta)
samples.loglike[ele, ] <- loglike
samples.fitted[ele, ] <- as.numeric(t(fitted))
if(n.miss>0) samples.Y[ele, ] <- t(Y.DA)[is.na(t(Y))]
}else
{}
########################################
## Self tune the acceptance probabilties
########################################
if(ceiling(j/100)==floor(j/100) & j < burnin)
{
#### Update the proposal sds
for(r in 1:(J-1))
{
if(p>2)
{
proposal.sd.beta[r] <- common.accceptrates1(accept.beta[c(r, (r+J-1))], proposal.sd.beta[r], 40, 50)
}else
{
proposal.sd.beta[r] <- common.accceptrates1(accept.beta[c(r, (r+J-1))], proposal.sd.beta[r], 30, 40)
}
}
accept.beta <- rep(0,2*(J-1))
}else
{}
################################
## print progress to the console
################################
if(j %in% percentage.points & verbose)
{
setTxtProgressBar(progressBar, j/n.sample)
}
}
#### Close the progress bar if used
if(verbose)
{
close(progressBar)
}else
{}
############################################
#### Return the results to the main function
############################################
#### Compile the results
if(n.miss==0) samples.Y = NA
chain.results <- list(samples.beta=samples.beta, samples.loglike=samples.loglike, samples.fitted=samples.fitted,
samples.Y=samples.Y, accept.beta=accept.beta)
#### Return the results
return(chain.results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.