Nothing
print.CARBayes <- function(x,...)
{
if(is.list(x$localised.structure))
{
#### Print out the model fitted
cat("\n#################\n")
cat("#### Model fitted\n")
cat("#################\n")
cat(x$model)
cat("Regression equation - ")
print(x$formula)
cat("\n")
cat("\n#################\n")
cat("#### MCMC details\n")
cat("#################\n")
cat("Total number of post burnin and thinned MCMC samples generated - ")
cat(x$mcmc.info[1])
cat("\n")
cat("Number of MCMC chains used - ")
cat(x$mcmc.info[5])
cat("\n")
cat("Length of the burnin period used for each chain - ")
cat(x$mcmc.info[3])
cat("\n")
cat("Amount of thinning used - ")
cat(x$mcmc.info[4])
cat("\n")
#### Print out the results
cat("\n############\n")
cat("#### Results\n")
cat("############\n")
cat("Posterior quantities and DIC\n\n")
print(x$summary.results[ ,-c(4,5)])
cat("\nDIC = ", x$modelfit[1], " ", "p.d = ", x$modelfit[2], " ", "LMPL = ", round(x$modelfit[5],2),"\n")
if(length(x$localised.structure[[2]])>1)
{
cat("\nThe number of stepchanges identified in the random effect surface\n")
temp <- x$localised.structure[[1]][!is.na(x$localised.structure[[1]])]
tab <- array(NA, c(1,2))
tab[1, ] <- c(sum(temp)/2, length(temp)/2- sum(temp)/2)
colnames(tab) <- c("no stepchange", "stepchange")
print(tab)
}else
{}
}else if(is.numeric(x$localised.structure))
{
#### Print out the model fitted
cat("\n#################\n")
cat("#### Model fitted\n")
cat("#################\n")
cat(x$model)
cat("Regression equation - ")
print(x$formula)
cat("\n")
cat("\n#################\n")
cat("#### MCMC details\n")
cat("#################\n")
cat("Total number of post burnin and thinned MCMC samples generated - ")
cat(x$mcmc.info[1])
cat("\n")
cat("Number of MCMC chains used - ")
cat(x$mcmc.info[5])
cat("\n")
cat("Length of the burnin period used for each chain - ")
cat(x$mcmc.info[3])
cat("\n")
cat("Amount of thinning used - ")
cat(x$mcmc.info[4])
cat("\n")
#### Print out the results
cat("\n############\n")
cat("#### Results\n")
cat("############\n")
cat("Posterior quantities and DIC\n\n")
print(x$summary.results[ ,-c(4,5)])
cat("\nDIC = ", x$modelfit[1], " ", "p.d = ", x$modelfit[2], " ", "LMPL = ", round(x$modelfit[5],2),"\n")
cat("\nNumber of clusters with the number of data points in each one\n")
print(table(paste("group", x$localised.structure, sep="")))
}else
{
#### Print out the model fitted
cat("\n#################\n")
cat("#### Model fitted\n")
cat("#################\n")
cat(x$model)
if(!is.list(x$formula))
{
cat("Regression equation - ")
print(x$formula)
}else
{
cat("Regression equation - ")
print(x$formula[[1]])
cat("Zero probability equation - ")
print(x$formula[[2]])
}
cat("\n")
cat("\n#################\n")
cat("#### MCMC details\n")
cat("#################\n")
cat("Total number of post burnin and thinned MCMC samples generated - ")
cat(x$mcmc.info[1])
cat("\n")
cat("Number of MCMC chains used - ")
cat(x$mcmc.info[5])
cat("\n")
cat("Length of the burnin period used for each chain - ")
cat(x$mcmc.info[3])
cat("\n")
cat("Amount of thinning used - ")
cat(x$mcmc.info[4])
cat("\n")
#### Print out the results
cat("\n############\n")
cat("#### Results\n")
cat("############\n")
cat("Posterior quantities and DIC\n\n")
print(x$summary.results[ ,-c(4,5)])
cat("\nDIC = ", x$modelfit[1], " ", "p.d = ", x$modelfit[2], " ", "LMPL = ", round(x$modelfit[5],2),"\n")
}
return(invisible(x))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.