Nothing
zip.glmMCMC <- function(Y, offset, offset.omega, X.standardised, V.standardised, K, p, q, which.miss, n.miss, which.zero, n.zero, burnin, n.sample, thin, MALA, n.beta.block, list.block, n.delta.block, list.block.delta, prior.mean.beta, prior.var.beta, prior.mean.delta, prior.var.delta, verbose, chain)
{
# Rcpp::sourceCpp("src/CARBayes.cpp")
# source("R/common.functions.R")
##########################################
#### Generate the initial parameter values
##########################################
#### Generate initial values for each chain
mod.glm <- glm(Y[Y>0]~X.standardised[Y>0, ]-1, offset=offset[Y>0], family="quasipoisson")
beta.mean <- mod.glm$coefficients
beta.sd <- sqrt(diag(summary(mod.glm)$cov.scaled))
beta <- rnorm(n=length(beta.mean), mean=beta.mean, sd=beta.sd)
Y.zero <- rep(0,K)
Y.zero[which.zero] <- 1
mod.glm2 <- glm(Y.zero~V.standardised-1, offset=offset.omega, family="binomial")
delta.mean <- mod.glm2$coefficients
delta.sd <- sqrt(diag(summary(mod.glm2)$cov.scaled))
delta <- rnorm(n=length(delta.mean), mean=delta.mean, sd=delta.sd)
omega <- exp(V.standardised %*% delta+offset.omega) / (1+exp(V.standardised %*% delta+offset.omega))
prob.pointmass <- omega[which.zero] / (omega[which.zero]+(1-omega[which.zero])*exp(-exp(as.matrix(X.standardised[which.zero, ]) %*% beta + offset[which.zero])))
Z <- rep(0, K)
Z[which.zero] <- rbinom(n=n.zero, size=1, prob=prob.pointmass)
###################################################################
#### Compute the fitted values based on the current parameter values
####################################################################
fitted <- exp(as.numeric(X.standardised %*% beta) + offset)
Y.DA <- Y
########################################
#### Set up the MCMC model run quantities
#########################################
#### Matrices to store samples
n.keep <- floor((n.sample - burnin)/thin)
samples.beta <- array(NA, c(n.keep, p))
samples.delta <- array(NA, c(n.keep, q))
samples.Z <- array(NA, c(n.keep, K))
samples.loglike <- array(NA, c(n.keep, K))
samples.fitted <- array(NA, c(n.keep, K))
if(n.miss>0) samples.Y <- array(NA, c(n.keep, n.miss))
#### Metropolis quantities
accept <- rep(0,4)
proposal.sd.beta <- 0.01
proposal.sd.delta <- 0.01
#### Start timer
if(verbose)
{
cat("\nMarkov chain", chain, "- generating", n.keep, "post burnin and thinned samples.\n", sep = " ")
progressBar <- txtProgressBar(style = 3)
percentage.points<-round((1:100/100)*n.sample)
}else
{
percentage.points<-round((1:100/100)*n.sample)
}
######################
#### Run an MCMC chain
######################
for(j in 1:n.sample)
{
####################################
## Sample from Y - data augmentation
####################################
if(n.miss>0)
{
Y.DA[which.miss==0] <- rpois(n=n.miss, lambda=fitted[which.miss==0]) * (1-Z[which.miss==0])
}else
{}
which.zero <- which(Y.DA==0)
n.zero <- length(which.zero)
###################################
#### Update Z via data augmentation
###################################
prob.pointmass <- omega[which.zero] / (omega[which.zero] + (1 - omega[which.zero]) * exp(-exp(as.matrix(X.standardised[which.zero, ]) %*% beta + offset[which.zero])))
Z <- rep(0, K)
Z[which.zero] <- rbinom(n=n.zero, size=1, prob=prob.pointmass)
####################
## Sample from beta
####################
Z.zero <- which(Z==0)
offset.temp <- offset[Z.zero]
if(MALA)
{
temp <- poissonbetaupdateMALA(as.matrix(X.standardised[Z.zero, ]), length(Z.zero), p, beta, offset.temp, Y.DA[Z.zero], prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta, list.block)
}else
{
temp <- poissonbetaupdateRW(as.matrix(X.standardised[Z.zero, ]), length(Z.zero), p, beta, offset.temp, Y.DA[Z.zero], prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta, list.block)
}
beta <- temp[[1]]
accept[1] <- accept[1] + temp[[2]]
accept[2] <- accept[2] + n.beta.block
######################
#### Sample from delta
######################
offset.temp <- offset.omega
if(MALA)
{
temp <- binomialbetaupdateMALA(V.standardised, K, q, delta, offset.temp, Z, 1-Z, rep(1,K), prior.mean.delta, prior.var.delta, n.delta.block, proposal.sd.delta, list.block.delta)
}else
{
temp <- binomialbetaupdateRW(V.standardised, K, q, delta, offset.temp, Z, 1-Z, prior.mean.delta, prior.var.delta, n.delta.block, proposal.sd.delta, list.block.delta)
}
delta <- temp[[1]]
accept[3] <- accept[3] + temp[[2]]
accept[4] <- accept[4] + n.delta.block
omega <- exp(V.standardised %*% delta+offset.omega) / (1+exp(V.standardised %*% delta+offset.omega))
#########################
## Calculate the deviance
#########################
lp <- as.numeric(X.standardised %*% beta) + offset
fitted <- exp(lp)
fitted.zip <- fitted * (1-omega)
temp <- rep(0,K)
temp[Z==1] <- log(omega[Z==1])
loglike <- temp + (1-Z) * (log(1-omega) + dpois(x=as.numeric(Y), lambda=fitted, log=T))
###################
## Save the results
###################
if(j > burnin & (j-burnin)%%thin==0)
{
ele <- (j - burnin) / thin
samples.beta[ele, ] <- beta
samples.delta[ele, ] <- delta
samples.Z[ele, ] <- Z
samples.loglike[ele, ] <- loglike
samples.fitted[ele, ] <- fitted.zip
if(n.miss>0) samples.Y[ele, ] <- Y.DA[which.miss==0]
}else
{}
########################################
## Self tune the acceptance probabilties
########################################
if(ceiling(j/100)==floor(j/100) & j < burnin)
{
#### Update the proposal sds
## beta
if(p>2)
{
proposal.sd.beta <- common.accceptrates1(accept[1:2], proposal.sd.beta, 40, 50)
}else
{
proposal.sd.beta <- common.accceptrates1(accept[1:2], proposal.sd.beta, 30, 40)
}
## delta
if(q>2)
{
proposal.sd.delta <- common.accceptrates1(accept[3:4], proposal.sd.delta, 40, 50)
}else
{
proposal.sd.delta <- common.accceptrates1(accept[3:4], proposal.sd.delta, 30, 40)
}
accept <- rep(0,4)
}else
{}
################################
## print progress to the console
################################
if(j %in% percentage.points & verbose)
{
setTxtProgressBar(progressBar, j/n.sample)
}
}
#### end timer
if(verbose)
{
close(progressBar)
}else
{}
############################################
#### Return the results to the main function
############################################
#### Compile the results
if(n.miss==0) samples.Y = NA
chain.results <- list(samples.beta=samples.beta, samples.delta=samples.delta, samples.Z=samples.Z, samples.loglike=samples.loglike, samples.fitted=samples.fitted,
samples.Y=samples.Y, accept=accept)
#### Return the results
return(chain.results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.