Description Usage Arguments Details Value Author(s) References See Also Examples
Cyclic Coordinate Descent for L2 regression with p predictors and n cases
1 | l2.reg(X, Y, lambda = 1)
|
X |
|
Y |
Outcome of length |
lambda |
Penalization Parameter. For optimal |
l2.reg
performs an algorithm for estimating regression coefficients in a penalized L2 regression model. The algorithm is based on cyclic coordinate descent. For the new L1 algorithm that is faster, see (l1.reg).
X |
The design matrix. |
cases |
The number of cases |
predictors |
The number of predictors |
lambda |
The value of penalization parameter |
residual |
A vector of length |
L2 |
The sum of the residuals |
estimate |
The estimate of the coefficients |
nonzeros |
The number "selected" variables included in the model. |
selected |
The name of the "selected" variables included in the model. |
Edward Grant, Kenneth Lange, Tong Tong Wu
Maintainer: Edward Grant edward.m.grant@gmail.com
Wu, T.T. and Lange, K. (2008). Coordinate Descent Algorithms for Lasso Penalized Regression. Annals of Applied Statistics, Volume 2, No 1, 224-244.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | set.seed(100)
n=500
p=2000
nzfixed = c(1:5)
true.beta<-rep(0,p)
true.beta[nzfixed] = c(1,1,1,1,1)
x=matrix(rnorm(n*p),p,n)
y = t(x) %*% true.beta
rownames(x)<-1:nrow(x)
colnames(x)<-1:ncol(x)
#Lasso penalized L2 regression
out<-l2.reg(x,y,lambda=2)
#Re-estimate parameters without penalization
out2<-l2.reg(x[out$selected,],y,lambda=0)
out2
|
Call:
l2.reg.default(x[out$selected, ], y, lambda = 0)
# of cases= 500
# of predictors= 5
Lambda used: 0
Intercept:
[1] 4.665571e-08
Selected Coefficient Estimates:
Predictor Estimate
[1,] "1" "0.999999991013709"
[2,] "2" "1.00000001898795"
[3,] "3" "0.999999972687231"
[4,] "4" "1.00000000402222"
[5,] "5" "0.999999997606403"
Number of Active Variables:
[1] 5
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.