Description Usage Arguments Details Author(s) References See Also Examples
Print short summary of results of cross validation for Greedy Coordinate Descent for Logistric Regression.
1 2 |
x |
Output of cv.logit.reg. Must be of class "cv.logit.reg" |
... |
N/A |
print.cv.logit.reg
produces output from cv.logit.reg
.
Edward Grant, Kenneth Lange, Tong Tong Wu
Maintainer: Edward Grant edward.m.grant@gmail.com
Wu, T.T., Chen, Y.F., Hastie, T., Sobel E. and Lange, K. (2009). Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, Volume 25, No 6, 714-721.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | set.seed(101)
n=250;p=50
beta=c(1,1,1,1,1,rep(0,p-5))
x=matrix(rnorm(n*p),p,n)
xb = t(x) %*% beta
logity=exp(xb)/(1+exp(xb))
y=rbinom(n=length(logity),prob=logity,size=1)
rownames(x)<-1:nrow(x)
colnames(x)<-1:ncol(x)
lam.vec = (0:15)*2
#K-fold cross validation
cv <- cv.logit.reg(x,y,5,lam.vec)
plot(cv)
#Lasso penalized logistic regression using optimal lambda
out<-logit.reg(x,y,cv$lam.opt)
#Re-estimate parameters without penalization
out2<-logit.reg(x[out$selected,],y,0)
out2$estimate
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.