Description Usage Arguments Details Author(s) References See Also Examples
Print short summary of results of Cyclic Coordinate Descent for Logistic Regression. Includes number of cases and predictors, lambda used, estimate of coeffcients produced, the number of selected predictors, and the names of selected predictors.
1 2 |
x |
Output of logit.reg. Must be of class "logit.reg" |
... |
N/A |
print.logit.reg
produces selected output from logit.reg. For more output, see summary.logit.reg.
Edward Grant, Kenneth Lange, Tong Tong Wu
Maintainer: Edward Grant edward.m.grant@gmail.com
Wu, T.T., Chen, Y.F., Hastie, T., Sobel E. and Lange, K. (2009). Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, Volume 25, No 6, 714-721.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | set.seed(1001)
n=500;p=5000
beta=c(1,1,1,1,1,rep(0,p-5))
x=matrix(rnorm(n*p),p,n)
xb = t(x) %*% beta
logity=exp(xb)/(1+exp(xb))
y=rbinom(n=length(logity),prob=logity,size=1)
rownames(x)<-1:nrow(x)
colnames(x)<-1:ncol(x)
#Lasso penalized logistic regression using optimal lambda
out<-logit.reg(x,y,50)
print(out)
#Re-estimate parameters without penalization
out2<-logit.reg(x[out$selected,],y,0)
print(out2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.