Description Usage Arguments Details Value Author(s) References See Also Examples
Print full summary of results of Greedy Coordinate Descent for L1 Regression.
1 2 |
object |
Output of l1.reg. Must be of class "l1.reg" |
... |
N/A |
summary.l1.reg
produces full output from l1.reg. For selected output, see print.l1.reg.
X |
The design matrix. |
Y |
The outcome variable for cases. |
cases |
The number of cases |
predictors |
The number of predictors |
lambda |
The value of penalization parameter |
objective |
The value of the objective function |
residual |
A vector of length |
L1 |
The sum of the residuals |
estimate |
The estimate of the coefficients |
nonzeros |
The name of "selected" variables included in the model. |
selected |
The name of the "selected" variables included in the model. |
Edward Grant, Kenneth Lange, Tong Tong Wu
Maintainer: Edward Grant edward.m.grant@gmail.com
Wu, T.T. and Lange, K. (2008). Coordinate Descent Algorithms for Lasso Penalized Regression. Annals of Applied Statistics, Volume 2, No 1, 224-244.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | set.seed(100)
n=500
p=2000
nz = c(1:5)
true.beta<-rep(0,p)
true.beta[nz] = c(1,1,1,1,1)
x=matrix(rnorm(n*p),p,n)
y = t(x) %*% true.beta
rownames(x)<-1:nrow(x)
colnames(x)<-1:ncol(x)
#Lasso penalized L1 regression
out<-l1.reg(x,y,lambda=50)
#Re-estimate parameters without penalization
out2<-l1.reg(x[out$selected,],y,lambda=0)
summary(out2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.